This study analyzed the influence of ball size and process control agents on the refinement and dehydrogenation behavior of TiH2 powder. Powders milled using ZrO2 balls with diameters of 0.1 mm, 0.3 mm, and 0.3+0.5+1 mm exhibited a bimodal particle size distribution, of which the first mode had the smallest size of 0.23 μm for the 0.3 mm balls. Using ethanol and/or stearic acid as process control agents was effective in particle refinement. Thermogravimetric analysis showed that dehydrogenation of the milled powder started at a relatively low temperature compared to the raw powder, which is interpreted to have resulted from a decrease in particle size and an increase in defects. The dehydrogenation kinetics of the TiH2 powder were evaluated by the magnitude of peak shift with heating rates using thermogravimetric analysis. The activation energy of the dehydrogenation reaction, calculated from the slope of the Kissinger plot, was measured to be 228.6 kJ/mol for the raw powder and 194.5 kJ/mol for the milled powder. TEM analysis revealed that both the milled and dehydrogenated powders showed an angular shape with a size of about 200 nm.
The structure and magnetic properties of composite powders prepared by ball milling a mixture of Fe2O3 ‧ (0.4-1.0)Fe were investigated. Hysteresis loops and differential scanning calorimetry (DSC) curves are used to characterize the materials and to examine the effect of the solid state reaction induced by ball milling. The results showed that a solid state reaction in Fe2O3 ‧ (0.4-1.0)Fe clearly proceeds after only 1 h of ball milling. The system is characterized by a positive reaction heat of +2.23 kcal/mole. The diffraction lines related to Fe2O3 and Fe disappeared after 1 h of ball milling and, instead, diffraction lines of the intermediate phase of Fe3O4 plus FeO formed. The magnetization and coercivity of the Fe2O3 ‧ 0.8Fe powders were changed by the solid state reaction process of Fe2O3 by Fe during ball milling. The coercivity of the Fe2O3 ‧ 0.8Fe powders increased with increasing milling time and reached a maximum value of 340 Oe after 5 h of ball milling. This indicates the grain size of Fe3O4 was clearly reduced during ball milling. The magnetic properties of the annealed powders depend on the amount of magnetic Fe and Fe3O4 phases.
This study investigated the effects of revolution speed and ball size in planetary milling on the microstructure and dehydrogenation behavior of TiH2 powder. The particle size analysis showed that the large particles present in the raw powder were effectively refined as the revolution speed increased, and when milled at 500 rpm, the median particle size was 1.47 μm. Milling with a mixture of balls of two or three sizes was more effective in refining the raw powder than milling with balls of a single size. A mixture of 3 mm and 5 mm diameter balls was the optimal condition for particle refinement, and the measured median particle size was 0.71 μm. The dependence of particle size on revolution speed and ball size was explained by changes in input energy and the number of contact points of the balls. In the milled powder, the endothermic peak measured using differential thermal analysis was observed at a relatively low temperature. This finding was interpreted as the activation of a dehydrogenation reaction, mainly due to the increase in the specific surface area and the concentration of lattice defects.
The effects of annealing on the microstructure and mechanical properties of Al–Zn–Mg–Cu–Si alloys fabricated by high-energy ball milling (HEBM) and spark plasma sintering (SPS) were investigated. The HEBM-free sintered alloy primarily contained Mg2Si, Q-AlCuMgSi, and Si phases. Meanwhile, the HEBM-sintered alloy contains Mg-free Si and θ-Al2Cu phases due to the formation of MgO, which causes Mg depletion in the Al matrix. Annealing without and with HEBM at 500oC causes partial dissolution and coarsening of the Q-AlCuMgSi and Mg2Si phases in the alloy and dissolution of the θ-Al2Cu phase in the alloy, respectively. In both alloys, a thermally stable α-AlFeSi phase was formed after long-term heat treatment. The grain size of the sintered alloys with and without HEBM increased from 0.5 to 1.0 μm and from 2.9 to 6.3 μm, respectively. The hardness of the sintered alloy increases after annealing for 1 h but decreases significantly after 24 h of annealing. Extending the annealing time to 168 h improved the hardness of the alloy without HEBM but had little effect on the alloy with HEBM. The relationship between the microstructural factors and the hardness of the sintered and annealed alloys is discussed.
Tungsten disulfide (WS2) nanosheets have attracted considerable attention because of their unique optical and electrical properties. Several methods for fabrication of WS2 nanosheets have been developed. However, methods for mass production of high-quality WS2 nanosheets remain challenging. In this study, WS2 nanosheets were fabricated using mechano-chemical ball milling based on the synergetic effects of chemical intercalation and mechanical exfoliation. The ball-milling time was set as a variable for the optimized fabricating process of WS2 nanosheets. Under the optimized conditions, the WS2 nanosheets had lateral sizes of 500–600 nm with either a monolayer or bilayer. They also exhibited high crystallinity in the 2H semiconducting phase. Thus, the proposed method can be applied to the exfoliation of other transition metal dichalcogenides using suitable chemical intercalants. It can also be used with highperformance WS2-based photodiodes and transistors used in practical semiconductor applications.
Recently, high-entropy carbides have attracted considerable attention owing to their excellent physical and chemical properties such as high hardness, fracture toughness, and conductivity. However, as an emerging class of novel materials, the synthesis methods, performance, and applications of high-entropy carbides have ample scope for further development. In this study, equiatomic (Hf-Ti-Ta-Zr-Nb)C high-entropy carbide powders have been prepared by an ultrahigh- energy ball-milling (UHEBM) process with different milling times (1, 5, 15, 30, and 60 min). Further, their refinement behavior and high-entropy synthesis potential have been investigated. With an increase in the milling time, the particle size rapidly reduces (under sub-micrometer size) and homogeneous mixing of the prepared powder is observed. The distortions in the crystal lattice, which occur as a result of the refinement process and the multicomponent effect, are found to improve the sintering, thereby notably enhancing the formation of a single-phase solid solution (high-entropy). Herein, we present a procedure for the bulk synthesis of highly pure, dense, and uniform FCC single-phase (Fm3m crystal structure) (Hf-Ti-Ta-Zr-Nb)C high-entropy carbide using a milling time of 60 min and a sintering temperature of 1,600oC.
In this study, acoustic and viscosity data are collected in real time during the ball milling process and analyzed for correlation. After fast Fourier transformation (FFT) of the acoustic data, changes in the signals are observed as a function of the milling time. To analyze this quantitatively, the frequency band is divided into 1 kHz ranges to obtain an integral value. The integrated values in the 2–3 kHz range of the frequency band decrease linearly, confirming that they have a high correlation with changes in viscosity. The experiment is repeated four times to ensure the reproducibility of the data. The results of this study show that it is possible to estimate changes in slurry properties, such as viscosity and particle size, during the ball milling process using an acoustic signal.
Tungsten heavy alloys (W–Ni–Fe) play an important role in various industries because of their excellent mechanical properties, such as the excellent hardness of tungsten, low thermal expansion, corrosion resistance of nickel, and ductility of iron. In tungsten heavy alloys, tungsten nanoparticles allow the relatively low-temperature molding of high-melting-point tungsten and can improve densification. In this study, to improve the densification of tungsten heavy alloy, nanoparticles are manufactured by ultrasonic milling of metal oxide. The physical properties of the metal oxide and the solvent viscosity are selected as the main parameters. When the density is low and the Mohs hardness is high, the particle size distribution is relatively high. When the density is high and the Mohs hardness is low, the particle size distribution is relatively low. Additionally, the average particle size tends to decrease with increasing viscosity. Metal oxides prepared by ultrasonic milling in high-viscosity solvent show an average particle size of less than 300 nm based on the dynamic light scattering and scanning electron microscopy analysis. The effects of the physical properties of the metal oxide and the solvent viscosity on the pulverization are analyzed experimentally.
세리아 입자의 합성을 위하여 분무열분해 시 유기 첨가제인 EG(ethylene glycol)과 CA(citric acid)를 첨가하여 중공성 및 다공성을 갖는 CeO2 마이크로 크기의 입자를 제조하였으며 첨가량에 따른 특성을 비교하였다. 분무열분해과정, 후소성 및 볼밀링 과정을 적절히 조합하여 만든 6가지 경로에 의해 나노 크기의 세리아 입자를 합성하였다. 6가지 경로 중 EG 및 CA가 0.05M 첨가된 Ce(III)가 전구체 수용액을 이용하여 분무열분해→후소성→볼밀링→후소성의 경로에 의해 얻어진 CeO2 입자에 대해 TEM 분석으로 측정한 입자의 평균 크기 24 nm(편차=3.8 nm)는 Debye-Scherrer식에 의해 계산된 1차 입자의 크기(20 nm)와 가장 유사한 크기를 나타내었다. 제조된 나노입자분말의 형태적 및 구조적 특성을 알아보기 위하여 SEM(Scanning Electron Microscopy), XRD(X-Ray Diffractometer) 및 TEM(Transmission Electron Microscopy)을 통하여 특성을 분석하였다.
We report the structural, morphological and magnetic properties of the Ni70Mn30 alloy prepared by Planetary Ball Mill method. Keeping the milling time constant for 30 h, the effect of different ball milling speeds on the synthesis and magnetic properties of the samples was thoroughly investigated. A remarkable variation in the morphology and average particle size was observed with the increase in milling speed. For the samples ball milled at 200 and 300 rpm, the average particle size and hence magnetization were decreased due to the increased lattice strain, distortion and surface effects which became prominent due to the increase in the thickness of the outer magnetically dead layer. For the samples ball milled at 400, 500 and 600 rpm however, the average particle size and hence magnetization were increased. This increased magnetization was attributed to the reduced surface area to volume ratio that ultimately led to the enhanced ferromagnetic interactions. The maximum saturation magnetization (75 emu/g at 1 T applied field) observed for the sample ball milled at 600 rpm and the low value of coercivity makes this material useful as soft magnetic material.
The hydrogen reduction behavior of MoO3-CuO powder mixture for the synthesis of homogeneous Mo-20 wt% Cu composite powder is investigated. The reduction behavior of ball-milled powder mixture is analyzed by XRD and temperature programmed reduction method at various heating rates in Ar-10% H2 atmosphere. The XRD analysis of the heat-treated powder at 300oC shows Cu, MoO3, and Cu2MoO5 phases. In contrast, the powder mixture heated at 400oC is composed of Cu and MoO2 phases. The hydrogen reduction kinetic is evaluated by the amount of peak shift with heating rates. The activation energies for the reduction, estimated by the slope of the Kissinger plot, are measured as 112.2 kJ/mol and 65.2 kJ/mol, depending on the reduction steps from CuO to Cu and from MoO3 to MoO2, respectively. The measured activation energy for the reduction of MoO3 is explained by the effect of pre-reduced Cu particles. The powder mixture, hydrogen-reduced at 700oC, shows the dispersion of nano-sized Cu agglomerates on the surface of Mo powders.
Composites of P25 TiO2 and hexagonal WO3 nanorods are synthesized through ball-milling in order to study photocatalytic properties. Various composites of TiO2/WO3 are prepared by controlling the weight percentages (wt%) of WO3, in the range of 1–30 wt%, and milling time to investigate the effects of the composition ratio on the photocatalytic properties. Scanning electron microscopy, x-ray diffraction, and transmission electron microscopy are performed to characterize the structure, shape and size of the synthesized composites of TiO2/WO3. Methylene blue is used as a test dye to analyze the photocatalytic properties of the synthesized composite material. The photocatalytic activity shows that the decomposition efficiency of the dye due to the photocatalytic effect is the highest in the TiO2/ WO3 (3 wt%) composite, and the catalytic efficiency decreases sharply when the amount of WO3 is further increased. As the amount of WO3 added increases, dye-removal by adsorption occurs during centrifugation, instead of the decomposition of dyes by photocatalysts. Finally, TiO2/WO3 (3 wt%) composites are synthesized with various milling times. Experimental results show that the milling time has the best catalytic efficiency at 30 min, after which it gradually decreases. There is no significant change after 1 hour.
Milled carbon fiber (mCF) was prepared by a ball milling process, and X-ray diffraction (XRD) diffractograms were obtained by a 2θ continuous scanning analysis to study mCF crystallinity as a function of milling time. The raw material for the mCF was polyacrylonitrile- based carbon fiber (T700). As the milling time increased, the mean particle size of the mCF consistently decreased, reaching 1.826 μm at a milling time of 18 h. The XRD analysis showed that, as the milling time increased, the fraction of the crystalline carbon decreased, while the fraction of the amorphous carbon increased. The (002) peak became asymmetric before and after milling as the left side of the peak showed an increasingly gentle slope. For analysis, the asymmetric (002) peak was deconvoluted into two peaks, less-developed crystalline carbon (LDCC) and more-developed crystalline carbon. In both peaks, Lc decreased and d002 increased, but no significant change was observed after 6 h of milling time. In addition, the fraction of LDCC increased. As the milling continued, the mCF became more amorphous, possibly due to damage to the crystal lattices by the milling.
This study investigated the effect of the grinding media of a ball mill under various conditions on the raw material of copper powder during the milling process with a simulation of the discrete element method. Using the simulation of the three-dimensional motion of the grinding media in the stirred ball mill, we researched the grinding mechanism to calculate the force, kinetic energy, and medium velocity of the grinding media. The grinding behavior of the copper powder was investigated by scanning electron microscopy. We found that the particle size increased with an increasing rotation speed and milling time, and the particle morphology of the copper powder became more of a plate type. Nevertheless, the particle morphology slightly depended on the different grinding media of the ball mill. Moreover, the simulation results showed that rotation speed and ball size increased with the force and energy.
A Nanosized WO3 and CuO powder mixture is prepared using novel high-energy ball milling in a bead mill to obtain a W-Cu nanocomposite powder, and the effect of milling time on the structural characteristics of WO3-CuO powder mixtures is investigated. The results show that the ball-milled WO3-CuO powder mixture reaches at steady state after 10 h milling, characterized by the uniform and narrow particle size distribution with primary crystalline sizes below 50 nm, a specific surface area of 37 m2/g, and powder mean particle size (D50) of 0.57 μm. The WO3-CuO powder mixtures milled for 10 h are heat-treated at different temperatures in H2 atmosphere to produce W-Cu powder. The XRD results shows that both the WO3 and CuO phases can be reduced to W and Cu phases at temperatures over 700oC. The reduced W-Cu nanocomposite powder exhibits excellent sinterability, and the ultrafine W-Cu composite can be obtained by the Cu liquid phase sintering process.
Carbonyl iron (CI) is successfully incorporated as an additive into a polystyrene (PS) matrix via a highenergy ball milling method, under an n-hexane medium with volume fractions between 1% and 5% for electromagnetic interference shielding applications by the combination of magnetic CI and an insulating PS matrix. The morphology and the dispersion of CI are investigated by field emission scanning electron microscopy, which indicates a uniform distribution of CI in the PS matrix after 2 h of milling. The thermal behavior results indicate no significant degradation of the PS when there is a slight increase in the onset temperature with the addition of CI powder, when compared to the as-received PS pellet. After milling, there are no interactions between the CI and the PS matrix, as confirmed by Fourier transformed infrared spectroscopy. In this study, the milled CI-PS powder is extruded to make filaments, and can have potential applications in the 3-D printing industry.
Fe-base superalloy powders with Y2O3 dispersion were prepared by high energy ball milling, followed by sparkplasma sintering for consolidation. High-purity elemental powders with different Fe powder sizes of 24 and 50mm were usedfor the preparation of Fe-20Cr-4.5Al-0.5Ti-O.5Y2O3 powder mixtures (wt%). The milling process of the powders was carriedout in a horizontal rotary ball mill using a stainless steel vial and balls. The milling times of 1 to 5 h by constant operation(350 rpm, ball-to-powder ratio of 30:1 in weight) or cycle operation (1300 rpm for 4 min and 900 rpm for 1 min, 15:1) wereapplied. Microstructural observation revealed that the crystalline size of Fe decreased with an increase in milling time by cyclicoperation and was about 15nm after 3 h, forming a FeCr alloy phase. The cyclic operation had an advantage over constantmilling in that a smaller-agglomerated structure was obtained. The milled powders were sintered at 1100oC for 30 min invacuum. With an increase in milling time, the sintered specimen showed a more homogeneous microstructure. In addition, ahomogenous distribution of Y-compound particles in the grain boundary was confirmed by EDX analysis.
The 304 stainless steel powders were prepared by high energy ball milling and subsequently sintered byspark plasma sintering, and the microstructural characteristics and micro-hardness were investigated. The initial size ofthe irregular shaped 304 stainless steel powders was approximately 42 µm. After high energy ball milling at 800 rpmfor 5h, the powders became spherical with a size of approximately 2 µm, and without formation of reaction compounds.From TEM analysis, it was confirmed that the as-milled powders consisted of the aggregates of the nano-sized particles.As the sintering temperature increased from 1073K to 1573K, the relative density and micro-hardness of sintered sampleincreased. The sample sintered at 1573K showed the highest relative density of approximately 95% and a micro-hard-ness of 550 Hv.