The pitch-based activated carbon fibers (ACFs) were prepared from ethylene tar-derived pitches containing nickelocene (CNi) or nickel nitrate (NiN). The effects of different anions and contents of metal salts on the microstructure and surface chemical properties of fibers were investigated. The results revealed that Ni2+ from CNi mainly remained its pristine molecule in the organometal salt-derived pitch (OP-xCNi), while Ni2+ from NiN occurred complexation reaction with polycyclic aromatic hydrocarbons (PAHs) in the inorganic metal salt-derived pitch (IP-xNiN) due to the weaker binding ability between anions and Ni2+ of CNi than CNi. The XRD and SEM results confirmed that IP-3NiN-ACF contained Ni, NiO, Ni2O3 nanoparticles with different size distributions, while OP-3CNi-ACF only contained more uniformly distributed Ni nanoparticles with small size. Furthermore, OP-3.0CNi-ACF presented higher specific surface area of 1862 m2/ g and a pore volume of 1.69 cm3/ g than those of IP-3.0NiN-ACF due to the formation of pore structure during the in-situ catalytic activation of different metal nanoparticles. Therefore, this work further pointed out that the desired pore structure and surface chemistry of pitch-based ACFs could be obtained through regulating and controlling the interaction of anion species, metal cations and PAHs during the synthesis of pitch precursors.
Abstract In the present study, the effect of nickel nitrate addition as a catalytic precursor for the in situ formation of Ni nanoparticles during the heating process has been investigated on the modification of microstructure and graphitization of amorphous carbon resulting from pyrolysis of phenolic resin. For this purpose, the prepared resin samples were cured in carbon substrate with and without additives at temperatures of 800, 1000, and 1250 °C. XRD, FESEM, and TEM studies were performed to investigate the phase and microstructural changes in the samples during the heating process. In addition to phase and microstructural studies, thermodynamic calculations of the reactions performed for the in situ formation of nickel nanoparticles and their effective factors during the curing process were performed. The results indicated that nickel nitrate is transformed to nickel nanoparticles of different sizes during the reduction process in a reduced atmosphere. The in situ formation of nickel nanoparticles and its catalytic effect led to the graphitization of carbon resulting from the pyrolysis of phenolic resin at a temperature of 800 °C and above. By increasing temperature, the morphology of the formed graphite changed and hollow carbon nanotubes, carbon cells, and onion skin carbon were formed in the microstructure. It was also observed that by increasing the temperature and the amount of additive, carbon nanotubes and their size are increased. A noteworthy point from thermodynamic calculations during the formation of nickel nanoparticles was that the nickel nanoparticles themselves acted as accelerators of nickel oxide reduction reactions and the formation of nickel nanoparticles. This increases the amount of amorphous carbon graphitization resulting from the pyrolysis of phenolic resin which leads to the formation of more carbon nanotubes at higher temperatures.
For solving phase separation of nanoparticles and graphene oxide (GO) in the application process, MgWO4– GO nanocomposites were successfully synthesized using three different dispersants via a facile solvothermal-assisted in situ synthesis method. The structure and morphology of the prepared samples were characterized by X-ray diffraction, Scanning electron microscopy, Transmission electron microscopy, Fourier transform infrared and Raman techniques. The experimental results show that MgWO4 nanoparticles are tightly anchored on the surfaces of GO sheets and the agglomeration of MgWO4 nanoparticles is significantly weakened. Additionally, MgWO4– GO nanocomposites are more stable than self-assembly MgWO4/ GO, which there is no separation of MgWO4 nanoparticles and GO sheets by ultrasound after 10 min. The catalytic results show that, compared with bare MgWO4, MgWO4– GO nanocomposites present better catalytic activities on the thermal decomposition of cyclotetramethylenete tranitramine (HMX), cyclotrimethylene trinitramine (RDX) and ammonium perchlorate (AP). The enhanced catalytic activity is mainly attributed to the synergistic effect of MgWO4 nanoparticles and GO. MgWO4– GO prepared using urea as the dispersant has the smallest diameter and possesses the best catalytic action among the three MgWO4– GO nanocomposites, which make the decomposition temperature of HMX, RDX and AP reduce by 10.71, 11.09 and 66.6 °C, respectively, and the apparent activation energy of RDX decrease by 68.6 kJ mol−1.
Odor emitted from food waste is commonly known as a severe problem, and needs to be controlled to minimize public complaints against food waste collection systems. In this study, ozone oxidation with manganese oxide catalyst, which is known to effectively treat odorous substances at room temperature, was applied to remove acetaldehyde and hydrogen sulfide, the model odorous compounds from food waste. In addition, the effect of relative humidity (RH) on the ozone/catalyst oxidation was tested at 40%, 60%, and 80%. When the catalyst was not applied, the removal of acetaldehyde was not observed with the ozone oxidation alone. In addition, hydrogen sulfide was slowly oxidized without a clear relationship under RH conditions. Meanwhile, the ozone oxidation rates for acetaldehyde and hydrogen sulfide substantially increased in the presence of the catalyst, but the removal efficiencies for both compounds decreased with increasing RH. Under the high RH conditions, active oxygen radicals, which were generated by ozone decomposition on the surface of the catalyst, were presumably absorbed and reacted with moisture, and the decomposition rate of the odorous compounds might be limited. Consequently, when the ozone oxidation device with a catalyst was applied to control odor from food waste, RH must be taken into account to determine the removal rates of target compounds. Moreover, its effect on the system performance must be carefully evaluated.
We have studied a method to prepare polydopamine-modified reduced graphene oxide-supported Pt nanoparticles (Pt– PDA–RGO). The Pt–PDA–RGO nanocomposites were synthesized by a wet-coating process, which was induced by selfpolymerization of dopamine. As an eco-friendly and versatile adhesive source in nature, dopamine could be easily adhered to surfaces of organic material and inorganic material via polymerization processes and spontaneous adsorption under weak alkaline pH conditions. To apply the unique features of dopamine, we synthesized Pt–PDA–RGO nanocomposites with a different quantity of dopamine, which are expected to preserve the improved Pt adsorption on graphene, resulting in the enhanced electrocatalytic performance. The morphology and micro-structure were examined by field emission scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared spectroscopy. Compared to pristine Pt–deposited RGO (Pt–RGO), Pt–PDA–RGO (30 wt% dopamine against RGO) nanocomposites showed a superior electrochemical active surface area for a methanol oxidation. This could be related to the fact that the optimized c
Owing to their scalability, flexible operation, and long cycle life, vanadium redox flow batteries (VRFBs) have gained immense attention over the past few years. However, the VRFBs suffer from significant polarization, which decreases their cell efficiency. The activation polarization occurring during vanadium redox reactions greatly affects the overall performance of VRFBs. Therefore, it is imperative to develop electrodes with numerous catalytic sites and a long cycle life. In this study, we synthesized heteroatom-rich carbon-based freestanding papers (H-CFPs) by a facile dispersion and filtration process. The H-CFPs exhibited high specific surface area (~820 m2 g–1) along with a number of redox-active heteroatoms (such as oxygen and nitrogen) and showed high catalytic activity for vanadium redox reactions. The H-CFP electrodes showed excellent electrochemical performance. They showed low anodic and cathodic peak potential separation (ΔEp) values of ~120 mV (positive electrolyte) and ~124 mV (negative electrolyte) in cyclic voltammetry conducted at a scan rate of 5 mV s–1. Hence, the H-CFP-based VRFBs showed significantly reduced polarization.
Activated carbon (AC) was modified by ammonium persulphate or nitric acid, respectively. AC and the modified materials were used as catalyst supports. The oxygen groups were introduced in the supports during the modifications. All the supports were characterized by N2-physisorption, Raman, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and thermogravimetric analysis. Methanol synthesis catalysts were prepared through wet impregnation of copper nitrate and zinc nitrate on the supports followed by thermal decomposition. These catalysts were measured by the means of N2-physisorption, X-ray diffraction, XPS, temperature programmed reduction and TEM tests. The catalytic performances of the prepared catalysts were compared with a commercial catalyst (CZA) in this work. The results showed that the methanol production rate of AC-CZ (23 mmol- CH3OH/(g-Cu·h)) was higher, on Cu loading basis, than that of CZA (9 mmol-CH3OH/ (g-Cu·h)). We also found that the modification methods produced strong metal-support interactions leading to poor catalytic performance. AC without any modification can prompt the catalytic performance of the resulted catalyst.
Mono- and few-layer graphenes were grown on Ni thin films by rapid-thermal pulse chemical vapor deposition technique. In the growth steps, the exposure step for 60 s in H2 (a flow rate of 10 sccm (standard cubic centimeters per minute)) atmosphere after graphene growth was specially established to improve the quality of the graphenes. The graphene films grown by exposure alone without H2 showed an intensity ratio of IG/I2D = 0.47, compared with a value of 0.38 in the films grown by exposure in H2 ambient. The quality of the graphenes can be improved by exposure for 60 s in H2 ambient after the growth of the graphene films. The physical properties of the graphene films were investigated for the graphene films grown on various Ni film thicknesses and on 260-nm thick Ni films annealed at 500 and 700˚C. The graphene films grown on 260-nm thick Ni films at 900˚C showed the lowest IG/I2D ratio, resulting in the fewest layers. The graphene films grown on Ni films annealed at 700˚C for 2 h showed a decrease of the number of layers. The graphene films were dependent on the thickness and the grain size of the Ni films.
Pt-loaded carbon black for the catalyst of a PEM fuel cell was synthesized with different molar ratios of polyvinylpyrrolidone and H2PtCl6 solution to improve the dispersion of Pt nanoparticles on carbon black and decrease the size of Pt nanoparticles. From transmission electron microscopy results, Pt nanoparticles of a size of approximately 2 nm were highly dispersed when the polyvinylpyrrolidone concentration was 10mM. The electrochemical activity of the synthesized Pt/C catalysts was investigated by cyclic voltammetry, showing that the as-synthesized Pt-loaded carbon black catalyst had the best activity at a polyvinylpyrrolidone concentration of 10 mM.
The effect of compositions of Al2O3 in the mixed Fe/Al2O3 catalysts on the synthetic behaviors of carbon nanotubes (CNTs) by catalytic chemical vapor deposition (CCVD) process was investigated in wide range of the mixture ratios of support materials. CNTs were synthesized with Fe/Al2O3 catalysis under the condition of 40 min in synthetic time, and 923 K of synthetic temperature using C2H4 and H2 as synthetic and carrier gas, respectively. The carbon yield with the content of Al2O3 showed in a parabolic curve and the maximum carbon yield was 40 wt.% of Al2O3. As the mixture ratio of Al2O3 increased, decreasing tendency was observed in the diameter of CNTs. Specific surface areas of CNTs were increased with the increase of the mixture ratio of Al2O3.
Background : Panos extract is a mixture of four Panax plant extracts namely Dendropanax morbifera, Panax ginseng, Acanthopanax senticosus and Kalopanax septemlobus. We intended to use Panos extract for ZnO nanoparticles(NPs) synthesis and application for waste water treatment.
Methods and Results : In the present study, we have synthesized Panos ZnO nanoparticles via co precipitation method. Characterization of the NPs has been done using X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR) and UV-Visible spectroscopy. An average of 75% efficacy in degrading the methylene blue dye has been observed. The nanoparticles showed antibacterial activity against E. coli and S. aureus.
Conclusion : The results shows that Panos ZnO NPs can be a potential eco-friendly and economical tool for waste water management in the current scenario where there an intense urge to remediate the polluted environment through novel approaches such as Nanobiotechnology.
In this study, the thermo-catalytic hydrogenation using corn stark and wasted palm kernel shell was carried out for the production of hydrocarbon compounds in direct biomass liquefaction. The conversion of biomass in direct biomass liquefaction over Mo-based catalyst increased with increasing the reaction temperature and the content of the volatile matter contained in biomass and the corn starch was more available than the wasted palm kernel shell. And then, the conversion was about 97.9% using corn starch and was about 92.4% using wasted palm kernel shell at 400oC. It was confirmed that the liquefied products obtained after the thermo-catalytic reaction were C6, C7, C8-typed hydrocarbon compounds.