To analyze the effect of fire in electric-vehicle battery on concrete cement structure. A scenario evaluation was conducted for fire occurrence due to external influences on lithium battery cells used in electric vehicles. Visual inspection was conducted at each stage of the battery fire, and the fire duration and temperature were measured. The battery temperature rise curve and temperature during fire have been examined previously. The stability of a cement structure was evaluated via X-ray diffraction and SEM analyses of the reaction-product changes with respect to temperature. The battery temperature rise curve shows that the battery begins to change at 200 °C–300 °C. However, the general stage of battery damage cannot be readily confirmed from the literature. The current experiment and literature review indicate that battery fire can cause the fire temperature to increase beyond 1000 °C within a few seconds. The reaction product changes structurally in cement from 300 °C or higher. Many voids are generated owing to the decomposition of Ca(OH)2 and C-S-H gel. The temperature of an electric-vehicle fire increases rapidly to 1000 °C or higher within a few seconds. High temperatures change the reaction products in cement structures, thus creating internal voids and cracks and reducing the stability of the structure; therefore, the appropriate countermeasures must be identified.
PURPOSES : Recently, the generation of industrial by-products has been increased owing to the increase in electrical power consumption. This experimental study investigated a special mortar development using outstanding benefits of porous structures in heavy oil fly ash (HOFA) and bottom ash (BA) to reduce heat transfer and weight of tunnel repair mortar.
METHODS : Based on the concept of materials usable for this objective being porous and light, the physical and chemical properties of heavy oil fly ash and bottom ash were analyzed to determine the application possibility for tunnel repair mortar. In addition to satisfying this primary requirement, the research aimed at determining the relationships between the characteristics of porous structures and effectiveness of reducing weight and thermal conductivity. This study was undertaken on the use of bottom ash as fine aggregate and heavy oil ash as filler in mortar mix proportion. Four different levels of bottom ash (25%, 50%, 75%, 100%, and 5%), and 10%, 15%, and 20% of heavy oil fly ash were investigated to determine the proper replacement amount within the designed specification. According to the analytic results on the effectiveness of both by-products and chemical additives, the repair mortar with optimum mixture proportion was investigated using various tests including thermal conductivity and porosity.
RESULTS : The use of porous by-products increased the demand for mixing water in obtaining the required flowability, but the compressive strength did not decrease significantly in proportion by adding an amount of bottom ash. Based on the results, bottom ash can be replaced with aggregate as much as 50%, but adding an amount of heavy oil ash is suggested as below 10% in formulation.
CONCLUSIONS : The optimized repair mortar, which was produced by conclusive formulation, was evaluated as a high-performance material to repair tunnels with the effectiveness of porous and remarkable physical properties.
본 연구에서는 지하 콘크리트 구조물의 누수 균열에 사용되는 주입형 누수보수재료의 품질관리 방안으로 규격화된 국제표준 ISO TS 16774, Part 2 Test method for chemical resistance를 이용하여 현재 우리나라 누수보수현장에서 사용하고 있는 주입형 누수보수재료 2계열 (합성고무계, 시멘트계), 3종류 씩, 총 9 종류의 보수재료에 대한 지하 콘크리트 구조물이 처한 화학적 환경의 저항 안정성을 연구·검토하였다. 그 결과, 합성고무계는 RG-3를 제외하고, 산에 대한 저항력을 높일 수 있는 재료적 검토가 필요하고, 시멘트계는 수산화나트륨, 염화나트륨에 대한 저항을 높일 수 있는 재료적 검토의 필요성이 확인되었다. 이러한 결과는 콘크리트 구조물의 화학적 환경에서의 보수재료 선정 시 기본 지 표로 사용가능 할 것으로 판단된다. 또한, 추후에 연구 개발 되는 보수재료의 품질 향상에 반영할 수 있는 기준 자료의 활용을 기대할 수 있다.
콘크리트의 배합에 있어서 포졸란 물질의 사용은 수화된 시멘트내의 칼슘 실리케이트 수화물을 증가시키고 미세 공극을 채워줌으로써 콘크리트의 투수성을 감소시킨다. 또한 콘크리트 내의 전체 염기량을 낮추어 알카리 골재반응에 의한 균열의 방지에도 효과가 있다. 본 연구에서는 포졸란 물질 중 반응성이 가장 우수한 나노실리카를 사용한 콘크리트 시멘트의 미세구조를 나노압입을 이용하여 분석할 것이다. 물질 표면의 경도를 측정하여 물질의 강도 및 강성을 파악하는 방법은 금속에 대하여 100여년간 수행되어 왔다. 콘크리트의 강도를 파악하는데 있어서도 슈미트 햄머를 이용하여 콘크리트의 표면경도를 측정하고 강도와 연관 짓는 방법이 널리 사용되고 있다. 나노압입 실험은 이러한 이론적인 배경을 바탕으로 나노 스케일의 압입 시험기를 사용하여 시멘트 페이스트를 구성하고 있는 미세구조의 기계적 특성을 파악하는 방법이다. 향후 콘크리트의 동결융해 실험, 알카리 골재 반응, 프리스트레스 강선과의 접착력 실험과 연계하여 균열에 대한 높은 내구성을 요구하는 콘크리트의 제작에 최적화된 나노실리카의 배합비를 산출하기 위한 기초연구로 사용될 것이다.
콘크리트의 열화 및 철근부식에 대응하기 위하여 다양한 보수재료가 존재하나 이러한 보수재료를 평가하는 방법은 단순히 염해, 중성화 등의 단독열화만을 대상으로 하고 있어 여러 가지 열화인자가 복합적으로 작용하는 실제 환경과는 차이를 나타내게 된다. 따라서 본 연구에서는 폴리머시멘트계 보수용 단면복구재가 KS 기준을 만족하는지 확인한 후 복합열화 환경 하에서 염해, 중성화. 철근부식을 평가하였다. 실험결과 각각의 보수재료들은 KS 기준을 만족하였지만 내구성능은 상이하게 나타나 향후 이에 대한 고려가 필요할 것으로 사료된다.