검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 8

        1.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        경로추종 제어는 대양에서 선박의 자율운항을 위한 가장 기본적인 연구 중에 하나로 여겨진다. 본 연구는 선수미방향, 횡방향 및 회두방향으로 외력이 작용하는 경로추종 제어를 다룬다. 가상의 선박에서 발생하는 항로를 자선이 추종하는 문제를 해결하기 위해서 유도 원리와 백스테핑 기법을 활용하였다. 경로추종 제어에서 가장 중요한 기술 중에 하나는 오차 동역학에 관한 것으로서, 이 개념은 선박의 자동 충돌 회피 및 자동 접안 제어 등과 같은 연구 영역에서도 활용이 가능하다. 유도 원리와 오차 변수의 알고리즘은 수치 시뮬레이션을 통해 증명하였다. 그 결과, 회두각의 오차를 제외한 대부분의 오차 변수는 제어기를 통하여 제로 값으로 수렴하였다. 기존에 근거리 통항선박의 간섭력을 고려한 안전통항거리의 값보다 두 선박 간의 경로추종 제어의 트래킹 오차의 값이 더 작은 점이 가장 흥미로운 결과 중에 하나로 여겨진다. 또한 프로펠러, 핀이나 러더와 같은 엑츄에이터의 손상을 줄이기 위해서는 수렴의 성능과 선박의 안전을 절충하여 적합한 제어 파라미터를 결정할 필요가 있다.
        4,000원
        3.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The 3-way valve have been used as a valve for opening and closing the valve by the flow control in the pressure system of the cryogenic and high pressure environment. In this paper, numerical analysis and experimental study on fracture nipple of 3-way ultra high pressure valve applied to space launch vehicle was carried out. We have developed a 3-way valve numerical simulation modeler of cryogenic environment using commercial software ANSYS 18.2. As results of numerical analysis, optimum nipple condition was derived. In addition, a 3-way valve prototype was fabricated and the fracture test was performed and compared with the numerical analysis results.
        4,000원
        4.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Unreasonable carbon BRICS appear in the process of economic growth in the emission of the negative externalities of the typical characteristics, needs under the government strong interference can be effectively controlled. In this paper, we study the relationship between environmental quality and economic development of the BRICS by using the semi parametric regression model, and explore the effective path to promote the coordinated development of economy and environment in the BRIC countries by introducing relevant control variables to determine the main influencing factors of EKC. The results show that: most of the BRIC countries in the environmental quality and economic growth in the presence of decoupling phenomenon; due to the industrial structure, urbanization and energy consumption and other aspects of the existence of irrational phenomenon to reduce the environmental quality; The promotion of sustainable development helps to improve environmental quality and promote economic development. The policy recommendations of this research is that the BRICS should pay more attention to the quality of economic development and energy saving and emission reduction work, and should adopt the strong low-carbon technology development and application of financial investment, promote the construction of ecological civilization, strengthen international cooperation, strengthen supervision and law enforcement efforts and other measures to achieve sustainable development goals.
        4,500원
        5.
        2020.09 KCI 등재 서비스 종료(열람 제한)
        A differential drive wheeled robot is a kind of mobile robot suitable for indoor navigation. Model predictive control is an optimal control technique with various advantages and can achieve excellent performance. One of the main advantages of model predictive control is that it can easily handle constraints. Therefore, it deals with realistic constraints of the mobile robot and achieves admirable performance for trajectory tracking. In addition, the intention of the robot can be properly realized by adjusting the weight of the cost function component. This control technique is applied to the local planner of the navigation component so that the mobile robot can operate in real environment. Using the Robot Operating System (ROS), which has transcendent advantages in robot development, we have ensured that the algorithm works in the simulation and real experiment.
        6.
        2020.09 KCI 등재 서비스 종료(열람 제한)
        In a four-wheel independent drive platform, four wheels and motors are connected directly, and the rotation of the motors generates the power of the platform. It uses a skid steering system that steers based on the difference in rotational power between wheel motors. The platform can control the speed of each wheel individually and has excellent mobility on dirt roads. However, the difficulty of the straight-running is caused due to torque distribution variation in each wheel’s motor, and the direction of rotation of the wheel, and moving direction of the platform, and the difference of the platform’s target direction. This paper describes an algorithm to detect the slip generated on each wheel when a four-wheel independent drive platform is traveling in a harsh environment. When the slip is detected, a compensation control algorithm is activated to compensate the torque of the motor mounted on the platform to improve the trajectory tracking performance of the platform. The four-wheel independent drive platform developed for this study verified the algorithm. The wheel slip detection and the compensation control algorithm of the platform are expected to improve the stability of trajectory tracking.
        7.
        2015.08 KCI 등재 서비스 종료(열람 제한)
        Conventional path tracking methods designed for two-wheeled differential drive robots are not suitable for omni-directional robots. In this study, we present a controller which can accomplish more accurate path tracking and orientation correction by exploiting the unconstrained movement capability of omni-directional robots. The proposed controller is proven to be stable using a Lyapunov stability criterion. Various experiments in real environments show that performance of path tracking and orientation correction has improved in the proposed controller.
        8.
        2010.05 KCI 등재 서비스 종료(열람 제한)
        In this paper, a hybrid semi-3D path planning algorithm combining Virtual Tangential Vector(VTV) and fuzzy control is proposed. 3D dynamic environmental factors are reflected to the 2D path planning model, VTV. As a result, the robot can control direction from 2D path planning algorithm VTV and speed as well depending on the fuzzy inputs such as the distance between the robot and obstacle, roughness and slope. Performances and feasibilities of the suggested method are demonstrated by using Matlab simulations. Simulation results show that fuzzy rules and obstacle avoidance methods are working properly toward virtual 3D environments. The proposed hybrid semi-3D path planning is expected to be well applicable to a real life environment, considering its simplicity and realistic nature of the dynamic factors included.