The efficient fabrication of uranium-based liquid fuels and the structural integrity of reactor materials are critical challenges for the deployment of chloride-based molten salt reactors (MSRs). As part of KAERI’s ongoing MSR development, this study investigates an optimized uranium chlorination process and a corrosion assessment of candidate structural materials under conditions more closely resembling actual reactor cores. To enhance process efficiency and scalability, metallic uranium was converted into uranium trihydride (UH3) via hydriding, achieving 34.1% efficiency. UH3 was chlorinated with ammonium chloride (NH4Cl), yielding uranium trichloride (UCl3) with a conversion rate over 98% and purity above 99%, as confirmed by ICP-OES. The UCl3 was used to fabricate various uranium-based liquid fuels for MSR applications. Simultaneously, the corrosion behavior of SS304, SS316, and Hastelloy-N was evaluated using a natural convection loop filled with a NaCl– MgCl2 eutectic salt mixture. The system operated for 500 hours at 500–580°C to replicate MSR conditions. Corrosion analysis revealed that SS304 suffered severe degradation, SS316 showed moderate resistance, and Hastelloy-N demonstrated superior stability, although some cold leg samples experienced mass gain due to corrosion product deposition. These findings provide key insights into optimizing liquid fuel synthesis and selecting corrosion-resistant materials for safe, long-term MSR operation.
본 연구는 수소 탱크를 고정하는 강재 볼트의 부식으로 인한 성능 저하 문제를 해결하기 위해 내부식성 복합재료로 알려진 Glass Fiber Reinforced Polymer (GFRP) 및 Carbon Fiber Reinforced Polymer (CFRP)를 활용한 앵커 시스템을 제안하고, 이를 지진 하 중 하에서의 안전성 평가를 통한 적용 타당성 검토를 수행하였다. 연구에서는 현장 조사를 통해 실제 사용 중인 수소 탱크의 설계 제 원을 확보한 후 이를 바탕으로 유한요소해석을 수행하였으며, AC 156 인공 지진파를 적용하여 FRP 앵커 볼트와 기존 강재 앵커의 성 능을 비교 분석하였다. 주요 분석 결과, FRP 앵커 볼트를 적용한 수소 탱크는 강재 앵커 볼트에 비해 고유 진동수가 21% 증가하여 구 조적 강성이 향상됨을 확인하였다. 또한, 가속도 응답 분석 결과 FRP 앵커 볼트는 상부 가속도를 감소시켜 지진 하중에 대한 저항성을 증진하는 것으로 나타났다. 응력 해석에서는 FRP 앵커 볼트가 강재 앵커 볼트에 비해 유효 응력이 약 91% 감소하여, 구조적 안전성이 크게 개선되었다. 그러나, FRP 앵커 볼트 적용 시 기초 콘크리트에 가해지는 쪼갬 인장 응력이 강재 앵커 대비 최대 3.5배 증가하는 것으로 나타났으며, 이에 따라 FRP 앵커 볼트 사용 시 기초 콘크리트의 보강이 필요할 것으로 사료된다. 이러한 연구 결과는 수치해석 에 국한된 결과로, 향후 실제 지진 하중을 모사한 실험적 검증이 필요하다. FRP 앵커 볼트의 적용 가능성은 향후 연구를 통해 광범위 하게 평가될 것이며, 이를 통해 수소 인프라의 내구성과 안전성을 더욱 강화할 수 있을 것으로 기대된다.
Super-duplex stainless steels are in great demand in various industrial fields such as chemical processing and seawater desalination due to their excellent pitting corrosion resistance. However, detrimental phases can easily form during fabrication, and even minor additions of alloying elements can significantly impact their microstructure and properties. This study investigated the effects Cu or Ti additions on a super-duplex stainless steel. First, the effects of annealing time at 950 °C on the microstructure and corrosion characteristics were investigated. It was found that as the annealing time increased, the fraction of sigma phase increased; however, the corrosion resistance in the electrochemical test using a 3.5 % NaCl electrolyte showed only a slight improvement. The microstructure of duplex stainless steel with added Cu or Ti did not differ significantly from that of the base steel. However, the overall corrosion resistance showed improvement, and in particular, an observed increase in pitting potential. Investigating the characteristics of the passive film on the alloy surface revealed that the stability of the passive film was higher in alloys with added Cu or Ti compared to the standard alloy. Among these, the alloy with Cu addition had the thickest film, while the Ti-added alloy had the highest Cr concentration and a film thickness greater than that of the standard alloy.
Recently, corrosion problems caused by quarantine disinfectant have occurred in the door panel of commercial trucks. As a way to solve this problem, a drain hole is being drilled in the door panel, and the door panel is being designed again for this purpose. Reinforcing parts such as frames or brackets for rigidity are attached to the inner and outer door panels, and spot welding is performed for assembly. X-rays and nugget diameter measurements of the welds were performed to confirm the results of performing according to various conditions for such spot welding. Through this study, it was confirmed that the pressing force had a greater effect on the welding quality than the amount of welding current.
국내 도로표지는 국토교통부에서 제정한 「도로표지 제작·설치 및 관리지침」을 토대로 설계와 시공이 이루어지고 있으며 문형식 과 편지식 도로표지 기초는 주로 역 T형 형식을 적용하고 있다. 기초 상단이 갓길 측은 성토 비탈면에, 중앙분리대 측은 포장 면에 위 치하여 기초 연결부가 고부식성 환경조건에 놓이게 된다. 이는 지주 및 앵커볼트에 부식이 쉽게 발생하고 장기적으로는 구조성능 저 하로 이어질 수 있는 사안이다. 아울러, 중앙분리대 측 문형식 도로표지 지주에는 방호 시설이 없는 상태로 차량 충돌 시 변형 또는 전도 위험과 2차 사고 발생 가능성 있다. 본 연구에서는 문형식과 편지식 도로표지 기초를 방호울타리 상단까지 높이는 방법으로 개선하였다. 풍하중에 의한 지주 휨모멘트 가 평균 18% 감소 되어 경제적인 설계가 가능하고 기초 연결부 환경조건이 개선되었다. 중앙분리대 측은 교통차단 등 특별한 조치 없 이도 상시 육안 점검이 가능하게 되어 유지관리 효율성이 증가하였고 방호성능 확보로 차량 충돌 시 지주 변형 또는 전도 위험이 해 소되었다. 결론적으로 기초 상단을 높임으로써 내구성, 유지관리 효율성 및 방호성능 향상을 기하면서도 경제적인 설계가 가능하게 되었다.
Interim dry cask storage systems comprising AISI 304 or 316 stainless steel canisters have become critical for the storage of spent nuclear fuel from light water reactors in the Republic of Korea. However, the combination of microstructural sensitization, residual tensile stress, and corrosive environments can induce chloride-induced stress corrosion cracking (CISCC) for stainless steel canisters. Suppressing one or more of these three variables can effectively mitigate CISCC initiation or propagation. Surface-modification technologies, such as surface peening and burnishing, focus on relieving residual tensile stress by introducing compressive stress to near-surface regions of materials. Overlay coating methods such as cold spray can serve as a barrier between the environment and the canister, while also inducing compressive stress similar to surface peening. This approach can both mitigate CISCC initiation and facilitate CISCC repair. Surface-painting methods can also be used to isolate materials from external corrosive environments. However, environmental variables, such as relative humidity, composition of surface deposits, and pH can affect the CISCC behavior. Therefore, in addition to research on surface modification and coating technologies, site-specific environmental investigations of various nuclear power plants are required.
The growing significance of sustainable energy technologies underscores the need for safe and efficient management of spent nuclear fuels (SNFs), particularly via deep geological disposal (DGD). DGD involves the long-term isolation of SNFs from the biosphere to ensure public safety and environmental protection, necessitating materials with high corrosion resistance for DGD canisters. This study investigated the feasibility of a Cu–Ni film, fabricated via additive manufacturing (AM), as a corrosion-resistant layer for DGD canister applications. A wire-fed AM technique was used to deposit a millimeter-scale Cu–Ni film onto a carbon steel (CS) substrate. Electrochemical analyses were conducted using aerated groundwater from the KAERI underground research tunnel (KURT) as an electrolyte with an NaCl additive to characterize the oxic corrosion behavior of the Cu–Ni film. The results demonstrated that the AM-fabricated Cu–Ni film exhibited enhanced corrosion resistance (manifested as lower corrosion current density and formation of a dense passive layer) in an NaCl-supplemented groundwater solution. Extensive investigations are necessary to elucidate microstructural performance, mechanical properties, and corrosion resistance in the presence of various corroding agents to simplify the implementation of this technology for DGD canisters.
국내 건축물에서는 노후한 철근콘크리트 구조물의 안전성이 중요한 문제로 대두되고 있다. 구조물 부분이나 전체의 무너짐으로 인해 경제적 손실을 초래할 수 있으며, 이는 주로 구성 재료의 내구성 결 함으로 인해 발생한다. 여러 노후화 인자 중 동결융해와 부식은 주요한 열화 요인으로 작용한다. 동결 지역의 구조물은 동결융해가 위험 요소로 작용할 수 있으며, 해양 구조물은 해수에 존재하는 염소이온 에 의해 부식될 수 있다. 이러한 문제를 해결하기 위해서는 복합 열화 작용과 철근콘크리트 부재의 성 능 저하 관계를 이해하는 것이 필요하다. 본 연구는 동결융해와 부식의 복합적 피해가 RC 보의 거동 에 미치는 영향을 실험적으로 조사하였다. 7개의 RC 보를 제작하여 각각 다른 수준의 열화 조건을 부여한 후 휨 시험을 실시하였다.
Fundamental aspects of creating passivation layers for corrosion resistance in nuclear engineering applications, specifically the ability to form complete layers versus porous ones, are being explored in this study. Utilizing a laser ablation technique, 1,064 nm fire at 10 Hz with 60 pulses per shot and 0.5 mm between impact points, aluminum samples are treated in an attempt to create a fully formed passivation layer that will be tested in a LiCl-KCl eutectic salt. By placing these samples into an electrochemical environment mimicking a pyroprocessing system, corrosion rates, resistances and material characteristics are tested for one week and then compared between treated and untreated samples. In initial testing, linear sweep voltammetry indicates corrosion current density for the untreated sample at −0.038 mA·cm−2 and treated samples at −0.024 mA·cm−2 and −0.016 mA·cm−2, respectively. This correlates to a control sample corrosion rate of −0.205 mm·yr−1 and treated rates of −0.130 mm·yr−1 and −0.086 mm·yr−1 for samples 1 and 2. In addition, electrochemical impedance spectroscopy circuits show application of a longer-lasting porous passivation layer on the treated metal, compared to the naturally forming layer. However, the current technique fails to create a uniform protection layer across the sample.