본 연구는 충북 청주시 소재 C대학교 인근 커피숍의 외부 및 내부사용 접근성 실태를 시설의 접근과 이 동에 있어서 약자로 간주되는 수동 휠체어 사용자 관점에서 평가하여 개선 방안을 제안하고 접근성 실 태를 시각적으로 확인할 수 있도록 돕는 접근성맵 제작하는 것을 목적으로 진행되었다. C대학교 인근 4개 동의 115개 커피숍을 대상으로 2024년 3월부터 5월까지 자체 제작한 체크리스트를 이용하여 현장 조사를 실시하였으며, 그 결과를 바탕으로 각 동별 커피숍 접근성맵을 제작하였다. 주요 결과와 적용점 은 다음과 같다. 첫째, 113개 진입형 및 혼합형 매장 중 수동휠체어 사용자의 자력진입과 내부 자력주행 및 사용이 모두 가능한 매장은 15.0%에 불과한 반면 수동휠체어 사용자의 자력진입이 불가능하거나 자력 내부 주행 및 사용이 불가능한 매장은 75.2%로 나타났다. 둘째, 비진입형 및 혼합형 커피숍 11개소 의 경우 수동휠체어 사용자의 자력 주문 및 대기가 가능한 매장은 단 한 개소도 나타나지 않았으며, 수동 휠체어 사용자의 주문과 대기가 불가능한 경우가 54.5%였다. 셋째, 충족률이 저조한 항목 중 가장 빈번 한 항목은 계산대나 키오스크 등의 무릎공간 확보였다.
본 연구는 COVID-19 중∙후 과정에서 나타난 중국 4세 유아의 신체 발달, 정서발달의 실태 현황을 파악하여 이를 토대로 정책적 제안을 하 고자 한다. 이를 위해 동영시와 빈저우시에 거주하는 중국 4세 유아의 학부모 1,040명을 통해 설문지를 수집하였으며 수집된 설문지는 SPSS 25.0을 이용하여 분석하였다. 이를 통해 국가및 지역사회의 유아교육 정 책 입안자, 유아교육 기관의 교직원, 학부모 등 유아 발달에 관한 정책 방안 및 실제적인 지침을 수립하는데 필요한 기초정보를 제공하고자 한 다. 또한 유아의 신체발달, 정서발달에 관한 다양한 프로그램을 개발하는 데에도 도움을 주고자 한다.
국내 절화류 표준규격은 장미, 카네이션, 국화 등 17개 품 목에 대하여 고시되어 있으나 이에 대한 생산자들의 인지도 및 활용도가 낮을 뿐만 아니라, 공영도매시장별 품질등급의 결정기준이 서로 달라 표준규격 운영의 실효성도 낮은 수준이 다. 이에 본 연구에서는 국내 도매시장의 화훼류 출하 실태를 조사하고 국내 시장 환경에 적합한 절화류 표준규격 개선 방 안을 모색하고자 하였다. 지난 10년간 국내 공영도매시장에서 거래된 절화류 품목의 수는 평균 228개 품목으로 꾸준히 증 가하는 추세이며, 주요 거래품목의 종류도 해마다 변화되고 있어 현재 절화류 표준규격에 고시된 품목만으로는 빠르게 변 화하는 화훼 시장에 대응하는데 한계가 있다. 2022년 기준 20대 절화류 가운데 라넌큘러스와 루스커스를 포함한 7개 품 목의 표준규격이 고시되어 있지 않다. 따라서 주요 거래품목 들을 대상으로 표준규격 고시 품목의 확대가 필요하며 품목별 표준규격 이외에 절화류 전체에 공통적으로 적용 가능한 절화 (공통) 표준규격 제정이 필요하다. 또한 현행 화훼류 표준규격 에서 품질평가 지표가 주관적 기준에 따라 평가될 수 있는 항 목들로 구성됨에 따라 aT화훼공판장에 상장된 절화의 68.1% 가 ‘특’으로 거래되는 등 실제 품질보다 높게 평가되고 있다. 이에 절화의 무게나 줄기의 굵기 등 절화의 내적 품질을 객관 적으로 평가할 수 있는 지표를 도입하고 개화정도나 결점 등 외적 품질을 판단할 수 있는 등급도감의 도입도 필요하다. 크 기구분 역시 aT화훼공판장에 상장된 절화의 18.5%만이 ‘1급’ 으로 출하되는 등 국내 생산환경에 적합한 수준으로 설정되어 있지 못할 뿐만 아니라, 온라인 유통 확대 등 절화 유통환경의 변화에 맞춰 실제 특성값을 표기할 수 있도록 표시방법을 변 경하고 절화의 길이 이외에도 꽃의 크기, 꽃 수 등 다양한 항 목의 정보를 제공할 수 있도록 개선할 필요가 있다.
To construct and operate nuclear power plants (NPPs), it is mandatory to submit a radiation environmental impact assessment report in accordance with Article 10 and Article 20 of the Nuclear Safety Act. Additionally, in compliance with Article 136 of the Enforcement Regulations of the same law, KHNP (Korea Hydro & Nuclear Power) annually assesses radiation environmental effects and publishes the results for operating NPPs. Furthermore, since the legalization of emission plans submission in 2015, KHNP has been submitting emission plans for individual NPPs, starting with the Shin-Hanul 1 and 2 units in 2018. These emission plans specify the emission quantities that meet the dose criteria specified by the Nuclear Safety and Security Commission. Before 2002, KHNP used programs developed in the United States, such as GASPAR and LADTAP, for nearby radiation environmental impact assessments. Since then, KHNP has been using K-DOSE60, developed internally. K-DOSE60 incorporates environmental transport analysis models in line with U.S. regulatory guidance Regulatory Guide 1.109 and dose assessment models reflecting ICRP-60 recommendations. K-DOSE60 is a stand-alone program installed on individual user PCs, making it difficult to manage comprehensively when program revisions are needed. Additionally, during the preparation of emission plans and the licensing phase, improvements to KDOSE60’ s dose assessment methodology were identified. Furthermore, in 2022, regulatory guidelines regarding resident dose assessments were revised, leading to additional improvement requirements. Currently, E-DOSE60, being developed by KHNP, is a network-based program allowing for integrated configuration management within the KHNP network. E-DOSE60 is expected to be developed while incorporating the identified improvements from K-DOSE60, in response to emission plan licensing and regulatory guideline revisions. Key improvements include revisions to dose assessment methodologies for H-13 and C-14 following IAEA TRS-472, expansion of dose assessment points, and changes in socio-environmental factors. Furthermore, data such as site meteorological information and releases of radioactive substances in liquid and gaseous forms can be linked through a network, reducing the potential for human errors caused by manual data entry. Ultimately, E-DOSE60 is expected to optimize resident exposure dose assessment and enhance public trust in NPP operation.
In order to evaluate the exposure dose of residents living near nuclear power plants, a Off-site Dose Calculation Program (ODCP) has been developed based on SAP since 2021. The ODCP consists of social environmental factor, atmospheric diffusion factors, liquid/gas dose evaluation, and comprehensive analysis, and was developed by dividing it into functional modules. The offsite dose calculation can be carried out monthly, quarterly, semi-annual, and annual, and resident dose evaluation is conducted by entering air diffusion factors and emissions for each period. It also enables comprehensive evaluation result management by developing history management functions together.
The ROK government has developed the Nuclear Export and Control System (NEPS) to implement export control activities. Although it was launched in 2008 as a system that can work with classification, licensing, nuclear material approval, government-to-government assurance, complying with nuclear cooperation agreement (NCA) handled through official documents. In order to enhance systematic management for items subject to NCA, KINAC developed a new module for the procedure (hereinafter referred to as “NCA module”) and opened it in 2022. This paper presents the module’s development background, key features, and current operation status. The NCA module prioritizes functional expansion and flexibility, distinct from other tasks for the following reasons. First, the export control duties of classification, export license, and approval for NM are based on domestic law, leading to predetermined target items, application forms, and processes that change only through statutory amendments. In contrast, the implementation of NCA has numerous procedural variables, varying across countries in scope, content, and procedures. Therefore, if the function is over-standardized, there would be many exceptions that the system cannot resolve in practice. Second, the existing NEPS process entails a one-time decision or approval for each application, while the implementation of the agreement encompasses four related procedures for each item: prior notification, written confirmation, shipment notification, and receipt confirmation. Even some steps may be omitted depending on the case. The other difference is the working process. The implementation of NCA must be initiated from the government, so the existing methods, beginning with the licensee filling a form, cannot be adopted as it is. The NCA module has adopted a new reference numbering system to resolve these challenges. It enables the creation of multiple procedures under one reference number on an item to expand the tasks and make it possible to omit some steps or to reflect case-by-case concerns in each stage. It also provides a consolidated view of multiple notifications related to a single item, ensuring to deal with even long-running tasks without missing any obligations until the final procedure. Moreover, some of the data in the NCA module is extensible by allowing users to manage the list themselves. For example, the system can respond to new agreements by allowing users to add and modify codes that distinguish counterparty countries. As a result, the current NCA module accommodates a variety of implementation scenarios, including split shipments, the procedural omissions, and the modification of additional counterparties, offering enhanced flexibility and adaptability.
Silicon (Si) has the potential to improve plant growth and stress tolerance. The study aimed to explore Si-involving plant responses and molecular characterization of different Si-responsive genes in alfalfa. In this study, the exogenous supplementation of Si enhanced plant growth, and biomass yield. Si-acquisition in alfalfa root and shoot was higher in Si-supplemented compared to silicon deficient (-Si) plants, implying Si-acquisition has beneficial on alfalfa plants. As a consequence, the quantum efficiency of photosystem II (Fv/Fm) was significantly increased in silicon-sufficient (+Si) plants. The quantitative gene expression analysis exhibited a significant upregulation of the Lsi1, Lsi2, Lsi3, NIP5;1, and NIP6;1 genes in alfalfa roots, while BOR1, BOR4, NIP2, and NIP3 showed no significant variation in their expression. The MEME results further noticed the association of four motifs related to the major intrinsic protein (MIP). The interaction analysis revealed that NIP5;1 and Lsi1 showed a shared gene network with NIP2, BOR1, and BOR4, and Lsi2, Lsi3 and NIP3-1, respectively. These results suggest that members of the major intrinsic proteins (MIPs) family especially Lsi1, Lsi2, Lsi3, NIP5;1, and NIP6;1 genes helped to pass water and other neutral solutes through the cell membrane and those played significant roles in Si uptake and transport in plants. Together, these insights might be useful for alfalfa breeding and genome editing approaches for alfalfa improvement.
Molten salts have gained significant attention as a potential medium for heat transfer or energy storage and as liquid nuclear fuel, owing to their superior thermal properties. Various fluoride- and chloride-based salts are being explored as potential liquid fuels for several types of molten salt reactors (MSRs). Among these, chloride-based salts have recently received attention in MSR development due to their high solubility in actinides, which has the potential to increase fuel burnup and reduce nuclear water production. Accurate knowledge of the thermal physical properties of molten salts, such as density, viscosity, thermal conductivity, and heat capacity, is critical for the design, licensing, and operation of MSRs. Various experimental techniques have been used to determine the thermal properties of molten salts, and more recently, computational methods such as molecular dynamics simulations have also been utilized to predict these properties. However, information on the thermal physical properties of salts containing actinides is still limited and unreliable. In this study, we analyzed the available thermal physical property database of chloride salts to develop accurate models and simulations that can predict the behavior of molten salts under various operating conditions. Furthermore, we conducted experiments to improve our understanding of the behavior of molten salts. The results of this study are expected to contribute to the development of safer and more efficient MSRs.
The US NRC developed a program called NRCDose3 to evaluates the environmental impact of radiation around nuclear facilities. The NRCDose3 code is a software suite that integrates the functionality of three individual LADTAP II, GASPAR II, and XOQDOQ Fortran codes that were developed by the NRC in the 1980’s and have been in use by the nuclear industry and the NRC staff for assessments of liquid effluent and gaseous effluent, and meteorological transport and dispersion, respectively. Through the integrated program, it is possible to conduct safety assessment and environmental impact assessment from liquid and gaseous effluent when operating permits are granted. In addition to a more user-friendly graphic user interface (GUI) for inputting data, significant changes have been made to the data management and operation to support expanded capabilities. The basic calculation methods of the LADTAP II, GASPAR II, and XOQDOQ have not been changed with this update to the NRCDose3 code. Several features have been added. The previous program used only ICRP-2 dose conversion factor, but the new program can additionally use dose conversion factor of ICRP-30 and ICRP-72. In the previous program, 4 age groups (infant, child, teen, and adult) were evaluated during dose evaluation, but when ICRP-72 was selected, 6 age groups (infant, 1-year, 5-year, 10-year, 15-year, and adult) could be evaluated. In addition, when selecting ICRP-72, many user-modifiable parameters such as food intake and exposure time were added. It will be referred to E-DOSE60, a program currently under development.
CANDU Spent Fuel (CSF) dry storage system, SILO, has been operated from 1992 at Wolsung under 50 year operating license. As of 2023, this system has been operated for over 30 years and its licensed remaining operation time is less than 20 years. When it faces the final stage of operation, it has only two options; moving to a centralized away-from-reactor storage or extending its license atreactor. These two options have an inevitable common duty of confirming the CSF integrity by a “demonstration test”. Since the degradation of CSF and structural materials in the SILO are critically dependent on temperature, two important goals of the ‘DEMO test’ were set as follows. 1. Design of ‘DEMO SILO’: Development of internal monitoring technology by transforming SILO design. 2. Accurate measurement and evaluation of the three-dimensional temperature distribution in the ‘DEMO SILO’ Based on operating real commercial SILO dimension, a conceptual “DEMO SILO” design has been developed from 2022. Because, unlike with commercial Silo, ‘Demo Silo’ must be disassembled and assembled, and have penetration holes. Safety evaluation technologies like structural, thermal and radiation protection analysis also have been developed with design work. ‘Demo SILO’ should evaluate an accurate 3D temperature distribution with minimal number of thermocouples and penetration holes to avoid disruption of internal flow and temperature distribution. For this reason, a ‘Best Estimate Thermal-Hydraulics evaluation system for SILO’ is under development and it will be essential for ensuring temperature prediction accuracy. Construction of a full-scale test apparatus to validate this technology will begin in 2024. In order to supply power to many heaters and monitor temperature gradient inside of this apparatus, it has modular design concept by dividing its whole body to axial 9 sub-bodies which looks like a donut containing a basket at center position.
대륙이동설로부터 시작되었고 이후 고지자기 및 해저퇴적물 등의 증거들에 의한 해저확장설을 통하여 정립된 판 구조론은, 지각의 운동을 몇 개의 강체 판들이 비록 느리지만 수억 년 이상의 긴 시간 동안 꾸준히 일어나는 움직임으로 서 설명하였다. 초기에는 지각판의 속도를 주로 수백만 년 동안의 고지자기 역전의 잔류 기록에 의거하여 판들 간의 상 대적 운동으로 추산하였는데, 1980년대 이후에는 우주측지 기법들을 이용하여 현재 시점의 판운동을 직접적으로 조사할 수 있게 되었고, 일부 지역에서 판의 변형이 일어나는 것도 확인하게 되었다. 본 해설에서는 (1) 초기의 상대적인 판운동 을 나타내는 모델들을 돌아보고, (2) 무회전 좌표계의 이론과 절대판운동 모델들을 요약-기술하며, (3) 판내부의 변형을 포함하는 최근의 모델을 소개하는 한편, (4) 국제 지구 기준계에 채택된 판운동 모델을 간략히 기술하였고, 끝으로 (5) 근 래에 보고된 남미, 남극, 유럽 등 몇 지역과 (6) 한반도 및 동북아의 지각판 움직임 연구를 각각 소개하였다.
This study was conducted to identify the distribution characteristics of the impervious area in urban watersheds and to reduce the deviation of the impervious area ratio that occurs depending on the degree of construction of land surface condition data. The average impervious area ratio by land use that can be applied to the calculation of the urban impervious area ratio was derived by statistically analyzing the distribution characteristics of the impervious area ratio by land use according to the urban watershed conditions. In urban watersheds, the change in impervious area ratio over the past 20 years has continuously increased in watersheds with an impervious area ratio of less than 60%, and decreased in watersheds with a high impervious area ratio of 60% or more. The average impervious area ratio by land use applicable to the land use technique is “Residential area” 84.0%, “Residential and commercial mix” 93.6%, “Commercial and business facilities” 89.8%, “Industrial land” 84.8%, “Public land” 47.3%, “Transportation facility” 93.3%, “Urban revitalization facility” 61.1%, “Bare land” 17.6%, “Special area” 11.4%, “Forest and open space” 3.5%, “Rivers and lakes” 9.2%. As a result of examining the adequacy of the average impervious area ratio by land use, the difference between the calculated value of the impervious area ratio using land use techniques and the actual impervious area ratio of the biotope map ranged from -3.0%p to 2.6%p at the significance level of 95%. In addition, when the watershed condition is applied, the difference ranged from -2.3%p to 1.7%p. By applying the average impervious area ratio by land use derived in this study, it was found that the impervious area ratio of the target urban watershed could be calculated within a deviation of ±3%p.
Safety assessment is important for the radioactive waste repositories, and several methods are used to develop scenarios for the management of radioactive waste. The intent of the use of these scenarios is to show how the radio nuclides release can affect the safety of disposal system. It plays an essential role of providing scientific and technical information for performance assessment of safety functions. As important as scenario is, numerous studies for their own scenario development have been conducted in many countries. Scenario development methodology is basically divided into four categories: (1) judgmental, (2) fault/event-tree analysis, (3) simulation, and (4) systematic. Under numerous research, these methods have been developed in ways to strengthen the advantages and make up for the weakness. However, it was hard to find any judgmental or fault/event-tree analysis approach in recent safety assessments since they are not well-systemized and difficult to cover all scenarios. Simulation and systematic approaches are used broadly for their convenience of analyzing needed scenarios. Furthermore, several new methodologies, Process Influence Diagram (PID)/Rock Engineering System (RES)/Hybrid, were developed to reinforce the systematic approach in recent studies. Currently, a government project related to the disposal of spent nuclear fuel is in progress in Korea, and the scenario development for safety case is one of the important tasks. Therefore, it is necessary to identify the characteristics and strengths and weaknesses of the latest scenario development and analysis methods to create a unique methodology for Korea. In this paper, the existing methodologies and cases will be introduced, and the considerations for future scenario development will be summarized by considering those used in the nuclear field other than repository issues. Systematic approach, which is the mostly commonly used method, will be introduced in detail with its use in other countries at the subsequent companion paper entitled ‘Case Study for a Disposal Facility for the Spent Nuclear Fuel’.