PURPOSES : Driving simulations are widely used for safety assessment because they can minimize the time and cost associated with collecting driving behavior data compared to real-world road environments. Simulator-based driving behavior data do not necessarily represent the actual driving behavior data. An evaluation must be performed to determine whether driving simulations accurately reflect road safety conditions. The main objective of this study was to establish a methodology for assessing whether simulation-based driving behavior data represent real-world safety characteristics. METHODS : A 500-m spatial window size and a 100-m moving size were used to aggregate and match the driving behavior indicators and crash data. A correlation analysis was performed to identify statistically significant indicators among the various evaluation metrics correlated with crash frequency on the road. A set of driving behavior evaluation indicators highly correlated with crash frequency was used as inputs for the negative binomial and decision tree models. Negative binomial model results revealed the indicators used to estimate the number of predicted crashes. The decision-tree model results prioritized the driving behavior indicators used to classify high-risk road segments. RESULTS : The indicators derived from the negative binomial model analysis were the standard deviation of the peak-to-peak jerk and the time-varying volatility of the yaw rate. Their importance was ranked first and fifth, respectively, using the proposed decision tree model. Each indicator has a significant importance among all indicators, suggesting that certain indicators can accurately reflect actual road safety. CONCLUSIONS : The proposed indicators are expected to enhance the reliability of driving-simulator-based road safety evaluations.
PURPOSES : Because a driving simulator typically focuses on analyzing a driver’s driving behavior, it is difficult to analyze the effect on the overall traffic flow. In contrast, traffic simulation can analyze traffic flow, that is, the interaction between vehicles; however, it has limitations in describing a driver’s driving behavior. Therefore, a method for integrating the simulator and traffic simulation was proposed. Information that could be controlled through driving experiments was used, and only the lane-change distance was considered so that a more natural driving behavior could be described in the traffic flow. METHODS : The simulated connection method proposed in this study was implemented under the assumption of specific traffic conditions. The driver’s lane-changing behavior (lane-changing distance, deceleration, and steering wheel) due to the occurrence of road debris was collected through a driving study. The lane-change distance was input as a parameter for the traffic simulation. Driving behavior and safety were compared between the basic traffic simulation setting, in which the driver's driving behavior information was not reflected, and the situation in which the driving simulator and traffic simulation were integrated. RESULTS : The number of conflicts between the traffic simulation default settings (Case 1) and the situation in which the driving simulator and traffic simulation were integrated (Case 2) was determined and compared for each analysis. The analysis revealed that the number of conflicts varied based on the level of service and road alignment of the analysis section. In addition, a statistical analysis was performed to verify the differences between the scenarios. There was a significant difference in the number of conflicts based on the level of service and road alignment. When analyzing a traffic simulation, it is necessary to replicate the driving behavior of the actual driver. CONCLUSIONS : We proposed an integration plan between the driving simulator and traffic simulation. This information can be used as fundamental data for the advancement of simulation integration methods.
PURPOSES : The purpose of this study is to evaluate the effectiveness of self-luminescent road markings using driving simulation.
METHODS : In this study, a driving simulation was conducted to evaluate the effectiveness of self-luminescent road markings. The details of this study are as follows. Highway sections were categorized as tunnels, tunnel approaches, bridges, merging areas, mainlines, and curbs. The luminance of the existing road markings was collected through field measurements. The luminance of the self-luminescent road markings was collected through experimental measurements. The luminance of the road markings is converted into a brightness ratio to be applied to the driving simulation. Road facilities at night were visualized during the driving simulation. Driving simulation was tested by 30 participants. Each participant rated the visibility perception of both the road markings ahead of 90 m with a 5-point scale. The log data generated from the driving simulation tests were analyzed.
RESULTS : The luminance of the existing road markings and self-luminescent road markings was measured. The luminance of the existing and lab-based road markings was converted into a brightness ratio. The road facilities of highway sections were investigated for driving simulations. The driving simulation was tested by 30 participants. Visibility perception ratings and log data from the driving simulation were analyzed. The average of visibility point increased from 1.01 to 4.63 when self-luminescent road markings were added to the existing road markings. The average speed also increased when self-luminescent road markings were added to existing road markings.
CONCLUSIONS : In conclusion, self-luminescent road markings can improve the visibility of road markings and driving speed, particularly in highway sections where driving speed decreases owing to low visibility.
The lane departure warning device can not detect the lane to be driven in the future by sensing the departure of the lane passing by during driving and warning the driver. Considering the safe operation of the truck, it is also expected that the departure of the future lanes according to the dynamic weight and speed of the current truck should be predicted. This study attempted to predict whether or not to deviate from the lanes of curved roads to be driven in the future according to the current dynamic driving weight and speed in consideration of the safe driving of trucks.
PURPOSES : This study aimed to develop data conversion of NGII HD maps to OpenDRIVE format for virtual road implementation for autonomous-driving verification.
METHODS : A method of defining the reference line of OpenDRIVE on the centerline of an NGII HD map is proposed. According to the construction characteristics of the NGII HD map, the optimal conversion method through parametric cubic polynomials was used in the form of piecewise and clamped cubic polynomials.
RESULTS : The study focused on curved roads that may cause problems when converting HD map data into OpenDRIVE formats. As a result of data conversion, a reference line was defined to precisely follow the alignment of NGII HD maps drawn based on MMS data, and a lively virtual road was reproduced through road lane width and lane expression.
CONCLUSIONS : A virtual road in the same environment as a real road, which is one of the important factors in verifying autonomous driving technology through virtual driving simulation, was constructed. The piecewise-polynomial normal was 0.008 m on average, and as a result of calculating the distance between the endpoint coordinates of the road object and the endpoint coordinates of the converted road object on the NGII HD map, the difference between the two points was 0.163 m on average. The clamped cubic polynomials normal was observed to be an average of 0.170 m.
PURPOSES : This paper aims to summarize the findings of studies related to driving safety in long tunnels, and based on these findings, evaluate the risk in driving safety in consecutive tunnels.
METHODS: After evaluating the risk in consecutive tunnels, it was verified that driving safety depends on the tunnel length of the consecutive tunnels and the interval between the tunnels. The experimental devices used in this study were a virtual driving simulator and PolyG-I system, measuring, driving speed and among driver's brain waves, theta wave that represents drowsiness or inner conscious states.
RESULTS: The results of experiment I showed that, in consecutive tunnels, the variation of speed was higher and the theta wave increased at similar points in comparison with that for long tunnels, demonstrating the risk in consecutive tunnels. The results of experiment II revealed that the variation of speed was the highest in the shortest tunnel (250 m) and the risk of overspeeding was the highest in the longest tunnel (900 m). Additionally, among the consecutive tunnels, the longer tunnels significantly increased the overall theta wave in the tunnels, increasing the risk of drowsy driving.
CONCLUSIONS: Of the three scenarios, it was concluded that safety was highest when the tunnel length was set to 600 m.
This research examined the effects of learning on driving simulation game in virtual reality environment. We tested the difference of presence and learning effects such as learning persistence and learning transfer between general monitor and 3D virtual reality device, Oculus Rift by playtesting experiment. One hundred drivers with a license participated in the experiment of two modes of gaming environment. As a result, the user’s presence was found to be significantly higher in VR than general monitor game. As functional effects of the driving serious game, learning persistence and transfer of learning showed significant differences between two modes. This study validates the effects of virtual reality on learning, as an aspect of serious game function. The results contributes to theoretical and practical application of virtual reality in interactive serious games in the future.
본 연구에서는 2D 화면과 3D화면으로 각각 제시된 운전 시뮬레이션 환경에서 운전자의 종적 차량통제, 주관 적 피로감 및 지각된 현실감에서의 차이를 비교하였다. 본 연구의 결과들을 요약하면 다음과 같다. 첫째, 실험참 가자들은 미리 정해진 네 가지 수준의 목표속도(60, 80, 100 및 120km/h)를 유지할 때 3D 조건보다는 2D 조건에 서, 그리고 목표속도가 낮을수록 목표속도에 비해 더 빠르게 운전하였고, 이러한 경향은 목표속도 조건과 상관없 이 일정하였다. 둘째, 선행차량과의 차간거리 유지수행에 대한 분석 결과, 2D 조건에 비해 3D 조건에서 실험참가 자들은 선행차량과 더 근접한 차간거리를 유지하며 주행하였는데, 특히 선행차량의 주행속도가 비교적 느렸던 조건(즉, 60km/h)에 비해 비교적 빨랐던 조건(즉, 80 및 100km/h)에서 이러한 경향이 두드러졌다. 셋째, 속도 유지 과제와 선행차량과의 차간거리 유지수행 모두에서 2D 조건에 비해 3D 조건에서 실험참가자들이 경험하는 피로 감의 수준이 더 높았으나 주관적 현실감에 대한 평가에서는 두 가지 과제 모두에서 2D와 3D 조건에 따라 유의 한 차이가 관찰되지 않았다.
Dry CVT(Continuously variable transmission) consists of a driving pulley and a driven pulley joined by rubber V-belt. Each pulley consists of a fixed flange and a movable flange. The movable flange of the driving pulley has centrifugal rollers and a ramp plate in it. The movable flange moves toward a fixed flange under the actuation of a centrifugal roller, as the driving pulley speed increases. In this study, computer simulation for a driving pulley was carried out for the purpose of analysis a Dry CVT. Based on the simulation we investigated relations between each omponent of driving pulley that consists of roller, movable flange and ramp plate
본 연구는 3D 가상현실에서의 운전 시뮬레이션 게임과 일반 모니터를 사용한 비디오 게임의 환경에서 실재감, 몰입, 각성의 사용자 경험이 어떠한 차이를 나타내는지를 비교 실험을 통해 수행하였다. 또한 운전 시뮬레이션 게임의 기능적 효과 측면에서 기능성 효과인 운전태도와 게임성 효과인 정서적 즐거움 그리고 복합적인 효과인 만족도를 비교 분석하였다. 자동차 운전면허를 소지한 초보운전자 남녀 각50명씩 총 100명의 실험 참여자를 선정하여 두 가지 실험 환경에서 운전 시뮬레이션 게임을 플레이테스팅 방법으로 실험을 진행하였다. 연구결과 실재감, 몰입, 각성의 사용자경험이 가상현실 환경에서 더 높은 것으로 나타났으며 게임의 기능적 효과인 운전태도, 정서, 만족도에서도 유의미한 차이를 나타냈다. 이 연구는 기능성게임의 가상현실 적용에 이론적, 실무적 기여를 하고 있다는 점에 의미가 있다.