Synthesis gas is a high valued compound as a basic chemicals at various chemical processes. Synthesis gas is mainly produced commercially by a steam reforming process. However, the process is highly endothermic so that the process is very energy-consuming process. Thus, this study was carried out to produce synthesis gas by the partial oxidation of methane to decrease the energy cost. The effects of reaction temperature and flow rate of reactants on the methane conversion, product selectivity, product ratio, and carbon deposition were investigated with 13wt% Ni/MgO catalyst in a fluidized bed reactor. With the fluidized bed reactor, CH4 conversion was 91%, and Hz and CO selectivities were both 98% at 850℃ and total flow rate of 100 mL/min. These values were higher than those of fixed bed reactor. From this result, we found that with the use of the fluidized bed reactor it was possible to avoid the disadvantage of fixed bed reactor (explosion) and increase the productivity of synthesis gas.
The effects of reaction temperature and flow rate of reactants on the methane conversion, product selectivity, product ratio, and carbon deposition were investigated with 13wt% Ni/MgO catalyst. Reaction temperatures were changed from 600 to 850℃, and reactants flow rates were changed from 100 to 200 mL/mim. There were no significant changes in the methane conversion observed in the range of temperatures used. It is possibly stemmed from the nearly total exhaustion of oxygen introduced. The selectiveties of hydrogen and carbon monoxide did not largely depend on the reaction temperature. The selectivities of hydrogen and carbon monoxide were 96 and 90%, respectively. Carbon deposition observed was the smallest at 750℃ and the largest at 850℃. It is found that the proper reaction temperature is 750℃. The best reactant flow rate was 150 ml/min.
In this study, to cope with the renewable portfolio standard system, a thermochemical process was applied to coffee residues. After the basic thermal characteristics analysis, it was judged that the gasification process could be applied because the volatile matter in coffee residues was high. The temperature and equivalent air ratio were set by using the data and the gasification characteristics with varying equivalent ratios were evaluated. Also, the experiments were conducted in a downdraft fixed bed reactor which was easy to operate and generates less tar. The best experimental results at equivalent ratio of 0.3 were obtained with syngas composition, lower heating value of product gas, gas yield, and tar yield of 16.94%, 1,410 kcal/Nm3, 2.04 Nm3/kg and 33.33 mg/L respectively. Also, cold gas efficiency and carbon conversion rate as the most important indicators of gasifier performance were 63.83% and 88.59% respectively. Comparing the gasification characteristics with sawdust in the same reactor, the value of coffee residue was higher in the cold gas efficiency but the amount of tar was higher. However, we could apply the gasification technology to coffee residues if we carried out studies to improve the gasification efficiency and to reduce the amount of tar. Furthermore, we take into consideration the fact that the supply of coffee residues was insufficient to use as a single feedstock and the consequent necessity to study the means of using it with other available fuel materials.
지난 10년간 신재생에너지 시장은 꾸준히 증가하고 있으며, 이와 더불어 폐기물 에너지화(WtE, Waste to Energy) 기술은 매년 5% 이상 꾸준히 성장할 것으로 예측된다. 폐기물 에너지화 기술은 폐기물 처리방식에 따라 물리적, 열화학적, 생물학적 기술로 분류되며 그중 하나인 폐기물 가스화 기술은 폐기물의 고부가가치 연료화 및 온실가스 감축 증대의 효과로 최근 더욱 각광받고 있다. 공급된 폐기물 내 탄소 및 수소 성분은 가스화 반응을 통해 CO, H2가 주성분인 합성가스로 전환되고 생산된 합성가스는 메탄올, 디젤류, DME 등 다양한 화학원료로 이용될 수 있으며 가스엔진 등 발전분야에 이용이 가능하다. 본 연구에서는 생활폐기물을 기반으로 제조된 비성형 고형연료를 대상으로 8 TPD급 고정층 가스화 반응기에서 합성가스의 생산특성에 대하여 연구하였다. 본 연구의 반응기는 가스화제 주입을 Down-draft 및 Up-draft의 방향으로 공급할 수 있도록 제작하였으며, 이와 더불어 가스화 반응 영역 후단에 Gas Chamber를 두어 추가적인 타르 크랙킹을 유도할 수 있도록 하였다. 기존 공기 가스화의 경우 공기 중의 대부분을 차지하는 비활성 물질인 질소의 공급량이 많아 생산가스 내 합성가스의 비율이 상대적으로 낮아 활용측면에서 발전부분에 국한 되는 한계가 있었다. 이에 반해 본 연구는 공기비(ER, Equivalent Ratio)와 더불어 순산소의 추가 공급으로 산소부화율을 제어하여 발생되는 합성가스의 주성분인 CO, H2의 비율을 30% 이상으로 높게 유지할 수 있었고 이를 통해 생산 가스의 열량 및 냉가스 효율 등 고품질의 합성가스를 생산할 수 있었다.
There have been a lot of efforts to increase recycling rate by more utilization of end of life vehicles (ELVs) in Korea.The target of recycling rate was set to 85% until 2014 and 95% after 2015 with including up to 10% of energy recovery,according to the law of “regulation about resource recycling of electrical and electronic products and automobiles”.Therefore, to achieve 95% of recycling rate by the year of 2015, the automobile and recycling industries should developan innovative technology to treat automobile shredder residues (ASRs) by efficient means of reduction or conversion toenergy, which were generated as final left-over after recovering all the valuables from ELVs. As one of the options toconvert to energy forms, the gasification of them was proposed. In this study the gasification experiment was performedusing ASRs at fixed-bed reactor with a capacity of 1kg/hr, at different temperatures of 800, 1,000 and 1,200oC, and atequivalence air ratios ranging from 0.1 to 0.5. The syngas (H2+CO) yield from ASR gasification experiment was obtainedup to 86% in maximum and about 40% in minimum in the experimental conditions given. There was a trend that theamount of syngas increased with elevated temperatures and the calorific value also showed similar trend with syngasproduction.
According to the statistics of the Ministry of Environment, the emission of sewage sludge is increased by 7 ~ 9% yearly. In the future, it will be increased continuously because of extension of sewage disposal plants, high class treatment for removing nitrogen and phosphorus. The objective of this study is to examine the possibility of the carbonization of the sewage sludge by pyrolysis. The pyrolysis behavior of the sewage sludge was investigated by the thermogravimetric analysis as a function of heating rate. In the pyrolysis studies measurements in weight loss was made and reported as a function of test temperature. To minimize energy consumption used for drying sewage sludge, naturally dried sludge were applied evaluate characteristics of thermal and carbonization treatment using a fixed-bed reactor. The most effective treatment temperature of carbonized material production was 400oC. The temperature of highest total yield of char and oil was 500oC. In the pyrolysis studies measurements in weight loss was made and reported as a function of test temperature. According to the result, the optimum pyrolysis temperature of sewage sludge were found to be ranged from 100oC to 600oC, respectively. About 91% of pyrolysis was completed between 100oC and 600oC. If applying the carbonization, it can be easily utilized as the replaced resource of energy(fuel) in the countries whose energy resources are insufficient, like our country.
Gasification, one of the thermo-chemical conversion technologies, has been known and researched for the conversion of low graded solid feedstock to gaseous form of fuel. Gasification for obtaining high-valued combustible gas such as hydrogen and carbon monoxide has been focused again due to high oil price with needs of alternative energy. And the gaseous product, known as synthesis gas (syngas) can be effectively utilized in a variety of ways ranging from electricity production to chemical industry. Gasification and melting processes are also operated at high temperatures with the destruction of hazardous components and production of gases, mainly CO and H2, which can be utilized as fuel gas or raw chemicals after cleaning. In this study, sawdust was experimented on in a lab-scale gasification process in order to characterize the gaseous products. At isothermal conditions at a fixed temperatures (800, 1000, 1200oC), the concentrations of CO, H2 and CH4 increased but CO2 and N2 decreased with lower equivalent ratio (ER). C2H6 concentration was varying and not depending upon ER. Carbon conversion efficiency, gas and tar yields increased with increasing ERs. Tar yield was related to carbon conversion efficiency and gas yield.