In this study, a method to produce a fine volatile powder extracted from shiitake mushrooms using spray freeze-drying (SFD) was investigated. The analysis of the water-soluble aromatic compounds was carried out by headspace solid phase micro-extraction (HS-SPME) coupled withgas chromatography-mass spectrometry (GC-MS). Scanning electron microscopy (SEM) and laser particle size analysis were applied to characterizethe physical structure and size distribution of the SFD-derivedparticles. Eleven key volatile compounds were identified in the extracts of shiitake mushroomspre- and post-SFD. Recoveries of aromatic volatiles ranging from 30.9 - 82.9% were observed in the overall flavor profile results from the powder obtained with SFD. SEM analysis demonstrated that the particles of the aromatic powderwere spherical in nature, having highly porous surfaces andmean diameters of 19.3 μm.
Spray freeze-drying (SFD) is a comparatively new method of producing biopharmaceutical powder preparations. In this study, Lactobacillus casei (IFO 15883)was spray freeze-dried to obtain a fine probiotic powder. The survival rate of L. casei in the powder after the SFD process was measured using plate agar counting. To improve the survival rate of L. casei during the SFD process, various experimental conditions were carried out. Among five growth media compositions, in Lactobacilli MRS broth with 1% mannose and 0.1% CaCO3, the viability of the freeze-dried powder was not significantly different from that of the initial powder (p>0.05). The most effective air pressure and protective agentduring SFD were 20 kPa and buffered peptone water (BPW), respectively. Scanning electron microscopy (SEM) was applied to estimate the physical structure and properties of the particles. SFD probiotic particles were of various shapes and sizes with porous structures under different SFD conditions. The average diameter of optimized probiotic powder particles with annealing was 24.8 μm. The survival rate of the final SFD probiotic powder under conditions was 97.7%.
콩나물과 같은 고섬유질 야채류의 동결건조 후 조직감 개선을 위한 전처리 방법을 연구한 결과 예비 열처리와 하 이드로콜로이드 및 당 용액 침지를 조합, 적용시 건조 후 조직수축이 개선되고 복원력이 향상 되었다. 100oC의 0.5%(w/w) 염화나트륨 용액에서 2분간 예비열처리한 다음 0.5% 알긴산나트륨과 1.0% 슈크로오스을 첨가한 상온의 용액에서 60분 교반 침지시 열수 복원 후 전반맛, 식감, 외관 등의 관능 품질이 100oC 물에서 1분간 예비 열처리 한 시료 보다 1.6점이나 더 우수하여 큰 개선 효과를 나타 내었으며, 기계적 측정치에서는 전처리 콩나물 줄기의 경 도값이 0.27 kgf로 가정 조리식의 0.26 kgf와 거의 근접한 수치를 보였다. 이러한 전처리 공정을 대파, 쑥갓, 고사리 등의 다양한 고섬유질 동결건조 야채류에 적용시 관능품질 및 복원력이 향상될 것으로 기대되므로 산업화에서 적용 가능성이 높다고 할 수 있다.
In order to fabricate the porous metal with controlled pore characteristics, unique processing by using metal oxide powder as the source and camphene as the sublimable material is introduced. CuO powder was selected as the source for the formation of Cu metal via hydrogen reduction. Camphene-based CuO slurry, prepared by milling at with a small amount of dispersant, was frozen at . Pores were generated subsequently by sublimation of the camphene. The green body was hydrogen-reduced at for 30 min, and sintered at for 1 h. Microstructural analysis revealed that the sintered Cu showed aligned large pore channels parallel to the camphene growth direction, and fine pores are formed around the large pore. Also, it showed that the pore size was controllable by the slurry concentration.