Fly ash is used as alumina-silicate resource material to reaction processing on geopolymer materials. The strength of material is belonging to alkaline liquid, fly ash, activity reaction of fly ash. Geopolymer concrete as non-toxic, bleed free and high strength material can be used for construction on rigid pavement. Study on influence of polypropylene fiber on performance characteristic of geopolymer concrete is considered. In this research, the mix proportion with fly ash and alkaline liquid is used to react on geopolymer concrete. The poly-propylene fiber in range from 0 to 0.5% by volume is added in mixture of geopolymer concrete. The ratio between length and diameter in range of 100-500 is investigated. The results are indicated that workability of fresh concrete is reduced by using poly-propylene fiber. The adding of poly-propylene fiber is significantly affected on characteristic of geopolymer concrete. Poly-propylene fiber can be distributed in fly ash matrix and reduced shrinkage of concrete during activation. After geopolymerization, compressive and the flexural strength of concrete produced with fibers are enhanced up to 10% and 20%, respectively. However, when the length to diameter ratio increases, compressive strength is tended to decrease with mixture using polypropylene fiber.
Geopolymer materials are attractive as inorganic binders due to their superior mechanical and eco-friendly properties. In the current study, geopolymer-based cement was prepared using aluminosilicate minerals from fly-ash with KOH as an alkaline-activator and Na2SiO3 as liquid glass. Then, calcium carbonate powder from a clam shell was mixed with the geopolymer and the mixture was coated on a concrete surface to provide points of attachment for environmental organisms to grow on the geopolymers. We investigated the effect of the shell powder grain size on the microstructure and bonding property of the geopolymers. A homogeneous geopolymer layer coated well on the concrete surface via aluminosilicate bonding, but the adhesiveness of the shell powder on the geopolymer cement was dependent on the grain size of the shell powder. Superior adhesive characteristics were shown in the shell powder of large grain size due to the deep penetration into the geopolymer by their large weight. This kind of coating can be applied to the adhesiveness of eco-materials on the surface of seaside or riverside blocks.
In this paper, fly ash was investigated as a basic Si-Al ingredient of geopolymer. Based on compressive and flexural strength, the replacement percentage of fly ash and 3 types of curing regimes were studied to obtain the optimum synthesis condition. The results showed that geopolymer containing 30% fly ash that was prepared at 80˚C for 8 hours, exhibited high mechanical strength. The compressive and flexural strength of the fly ash based geopolymer were 32.2 and 7.15MPa, respectively. In order to investigate the durability behavior of fly ash based geopolymer concrete, CI permeability, freeze-thaw tests were also carried out. The measured results indicated that fly ash based gopolymer concrete had 2.63 times lower coefficient of chloride-ion diffusion and could withdraw 2.2 times more freeze-thaw cycles as compared to Portland concrete with the same compressive strength.
In this study, it was developed geopolymer concrete of alkali-activated using the mixed fly ash and blast furnace slag. and it was developed the interlocking block using the developed geopolymer concrete. In addition, the bending strength and water absorption rate of the interlocking block was tested by KS standard. The test results were as follows. The water adsorption ratio of the BSF4 specimen was under 10%, and the flexural strength of that was over 5MPa
In this study, it was developed geopolymer concrete of alkali-activated using the mixed fly ash and blast furnace slag. and it was developed the interlocking block using the developed geopolymer concrete. In addition, the bending strength and water absorption rate of the interlocking block was tested by KS standard. The test results were as follows. The water adsorption ratio of the BSF4 specimen was under 10%, and the flexural strength of that was over 5MPa.
Among Non-destructive tests Ultrasonic Pulse Velocity Method is identified as an efficient and simple method to estimate the mechanical characteristics of the material. In this study, Ultrasonic Pulse Velocity Method for Normal concrete were applied to geopolymer concrete specimens. Pressure waves, ultrasonic velocity and maximum frequency in these specimens were measured. similar to normal concrete, Initial ultrasonic velocity of geopolymer concretes reflected stress of geopolymer concretes, but maximum frequency bandwidth did not.
In this study, it was developed eco-friendly geopolymer concrete using ground granulated blast furnace slag and alkali activator(water glass, sodium hydroxides). Also, it was evaluated the flexure capacity of the RC beams using geopolymer concrete. The eco-friendly concrete using geopolymer encouraged alkali activation reaction has rapid hardening speed and showed possibility as a high strength concrete. Also, the RC beams applied this showed similar movement and destroy tendency with RC used previous cement
In this study, it was developed eco-friendly geopolymer fiber reinforced concrete using ground granulated blast furnace slag and alkali activator(water glass, sodium hydroxides). The purpose of this study is to evaluate the performance of eco-friendly geopolymer fiber reinforced concrete by performing compression tests and absorption tests.
This paper reports test to assess the influence of water/solid on the compressive strength of fly ash based alkali activated concrete. According to test results, the strength is influenced by the waste/solid. Also, the appropriate Ms(SiO2/Na2O) rate is thought to be 1.0.