검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 12

        1.
        2020.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Synthesizing one-dimensional nanostructures of oxide semiconductors is a promising approach to fabricate highefficiency photoelectrodes for hydrogen production from photoelectrochemical (PEC) water splitting. In this work, vertically aligned zinc oxide (ZnO) nanorod arrays are successfully synthesized on fluorine-doped-tin-oxide (FTO) coated glass substrate via seed-mediated hydrothermal synthesis method with the use of a ZnO nanoparticle seed layer, which is formed by thermally oxidizing a sputtered Zn metal thin film. The structural, optical and PEC properties of the ZnO nanorod arrays synthesized at varying levels of Zn sputtering power are examined to reveal that the optimum ZnO nanorod array can be obtained at a sputtering power of 20W. The photocurrent density and the optimal photocurrent conversion efficiency obtained for the optimum ZnO nanorod array photoanode are 0.13 mA/cm2 and 0.49 %, respectively, at a potential of 0.85 V vs. RHE. These results provide a promising avenue to fabricating earth-abundant ZnO-based photoanodes for PEC water oxidation using facile hydrothermal synthesis.
        4,000원
        2.
        2019.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We report on the fabrication and characterization of an oxide photoanode with a zinc oxide (ZnO) nanorod array embedded in cuprous oxide (Cu2O) thin film, namely a ZnO/Cu2O oxide p-n heterostructure photoanode, for enhanced efficiency of visible light driven photoelectrochemical (PEC) water splitting. A vertically oriented n-type ZnO nanorod array is first prepared on an indium-tin-oxide-coated glass substrate via a seed-mediated hydrothermal synthesis method and then a p-type Cu2O thin film is directly electrodeposited onto the vertically oriented ZnO nanorod array to form an oxide p-n heterostructure. The introduction of Cu2O layer produces a noticeable enhancement in the visible light absorption. From the observed PEC current density versus voltage (J-V) behavior under visible light illumination, the photoconversion efficiency of this ZnO/Cu2O p-n heterostructure photoanode is found to reach 0.39 %, which is seven times that of a pristine ZnO nanorod photoanode. In particular, a significant PEC performance is observed even at an applied bias of 0 V vs Hg/Hg2Cl2, which makes the device self-powered. The observed improvement in the PEC performance is attributed to some synergistic effect of the pn bilayer heterostructure on the formation of a built-in potential including the light absorption and separation processes of photoinduced charge carriers, which provides a new avenue for preparing efficient photoanodes for PEC water splitting.
        4,000원
        3.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        RuO2 is a common active component of Dimensionally Stable Anodes (DSAs) for chlorine evolution that can be used in wastewater treatment systems. The recent improvement of chlorine evolution using nanostructures of RuO2 electrodes to increase the treatment efficiency and reduce the energy consumption of this process has received much attention. In this study, RuO2 nanorod and nanosheet electrodes were simply fabricated using the sol-gel method with organic surfactants as the templates. The obtained RuO2 nanorod and nanosheet electrodes exhibit enhanced electrocatalytic activities for chlorine evolution possibly due to the active surface areas, especially the outer active surface areas, which are attributed to the increase in mass transfers compared with a conventional nanograin electrode. The electrocatalytic activities for chlorine evolution were increased up to 20 % in the case of the nanorod electrode and 35% in the case of the nanosheet electrode compared with the nanograin electrode. The RuO2 nanorod 80 nm in length and 20-30 nm in width and the RuO2 nanosheet 40-60 nm in length and 40 nm in width are formed on the surface of Ti substrates. These results support that the templated RuO2 nanorod and nanosheet electrodes are promising anode materials for chlorine evolution in future applications.
        4,000원
        4.
        2017.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Transparent conducting oxides (TCOs) were fabricated using solution-based ITO (Sn-doped In2O3) nanoinks with nanorods at an annealing temperature of 200 oC. In order to optimize their transparent conducting performance, ITO nanoinks were composed of ITO nanoparticles alone and the weight ratios of the nanorods to nanoparticles in the ITO nanoinks were adjusted to 0.1, 0.2, and 0.5. As a result, compared to the other TCOs, the ITO TCOs formed by the ITO nanoinks with weight ratio of 0.1 were found to exhibit outstanding transparent conducting performance in terms of sheet resistance (~102.3 Ω/square) and optical transmittance (~80.2%) at 550 nm; these excellent properties are due to the enhanced Hall mobility induced by the interconnection of the composite nanorods with the (440) planes of the short lattice distance in the TCOs, in which the presence of the nanorods can serve as a conducting pathway for electrons. Therefore, this resulting material can be proposed as a potential candidate for solution-based TCOs for use in optoelectronic devices requiring large-scale and low-cost processes.
        4,000원
        5.
        2016.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fe-based pigments have attracted much interest owing to their eco-friendliness. In particular, the color of nanosized pigments can be tuned by controlling their size and morphology. This study reports on the effect of length on the coloration of β-FeOOH pigments prepared using an NH4OH solution. First, rod-type β-FeOOH is prepared by the hydrolysis of FeCl3·6H2O and NH4OH. When the amount of NH4OH is increased, the length of the rods decreases. Thus, the length of the nanorods can be adjusted from 10 nm to 300 nm. The color of β-FeOOH changes from orangered to yellow depending on the length of β-FeOOH. The color and phase structure of β-FeOOH is characterized by UVvis spectroscopy, CIE Lab color parameter measurements, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and powder X-ray diffraction (XRD).
        4,000원
        6.
        2015.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We report on the successful fabrication of ZnO nanorod (NR)/polystyrene (PS) nanosphere hybrid nanostructure by combining drop coating and hydrothermal methods. Especially, by adopting an atomic layer deposition method for seed layer formation, very uniform ZnO NR structure is grown on the complicated PS surfaces. By using zinc nitrate hexahydrate [Zn(NO3)2 ·6H2O] and hexamine [(CH2)6N4] as sources for Zn and O in hydrothermal process, hexagonal shaped single crystal ZnO NRs are synthesized without dissolution of PS in hydrothermal solution. X-ray diffraction results show that the ZnO NRs are grown along c-axis with single crystalline structure and there is no trace of impurities or unintentionally formed intermetallic compounds. Photoluminescence spectrum measured at room temperature for the ZnO NRs on flat Si and PS show typical two emission bands, which are corresponding to the band-edge and deep level emissions in ZnO crystal. Based on these structural and optical investigations, we confirm that the ZnO NRs can be grown well even on the complicated PS surface morphology to form the chestnut-shaped hybrid nanostructures for the energy generation and storage applications
        4,000원
        7.
        2015.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We report on the succesful fabrication of ZnO nanorod (NR)-based robust piezoelectric nanogenerators(PNGs) by using Cu foil substrate. The ZnO NRs are successfully grown on the Cu foil substrate by using all solutionbased method, a two step hydrothermal synthesis. The ZnO NRs are grown along c-axis well with an average diameterof 75~80 nm and length of 1~1.5 µm. The ZnO NRs showed abnormal photoluminescence specrta which is attributedfrom surface plasmon resonance assistant enhancement at specific wavelength. The PNGs on the SUS substrates showtypical piezoelectric output performance which showing a frequency dependent voltage enhancement and polarity depen-dent charging and discharging characteristics. The output voltage range is 0.79~2.28 V with variation of input strain fre-quency of 1.8~3.9 Hz. The PNG on Cu foil shows reliable output performance even at the operation over 200 timeswithout showing degradation of output voltage. The current output from the PNG is 0.7 µA/cm2 which is a typical out-put range from the ZnO NR-based PNGs. These performance enhancement is attributed from the high flexibility, highelectrical conductivity and excellent heat dissipation properties of the Cu foil as a substrate.
        4,000원
        8.
        2012.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Nanostructures of ZnO, such as nanowires, nanorods, nanorings, and nanobelts have been actively studied andapplied in electronic or optical devices owing to the increased surface to volume ratio and quantum confinement that theyprovide. ZnO seed layer (about 40nm thick) was deposited on Si(100) substrate by RF magnetron sputtering with power of60 W for 5 min. ZnO nanorods were grown on ZnO seed layer/Si(100) substrate at 95oC for 5 hr by hydrothermal methodwith concentrations of Zn(NO3)2·6H2O [ZNH] and (CH2)6N4 [HMT] precursors ranging from 0.02M to 0.1M. We observed themicrostructure, crystal structure, and photoluminescence of the nanorods. The ZnO nanorods grew with hexahedron shape tothe c-axis at (002), and increased their diameter and length with the increase of precursor concentration. In 0.06 M and 0.08M precursors, the mean aspect ratio values of ZnO nanorods were 6.8 and 6.5; also, ZnO nanorods had good crystal quality.Near band edge emission (NBE) and a deep level emission (DLE) were observed in all ZnO nanorod samples. The highestpeak of NBE and the lower DLE appeared in 0.06 M precursor; however, the highest peak of DLE and the lower peak ofNBE appeared in the 0.02 M precursor. It is possible to explain these phenomena as results of the better crystal quality andhomogeneous shape of the nanorods in the precursor solution of 0.06 M, and as resulting from the bed crystal quality and theformation of Zn vacancies in the nanorods due to the lack of Zn++ in the 0.02 M precursor.
        4,000원
        9.
        2011.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        As a growth-template of ZnO nanorods (NR), a hexagonal β-Ni(OH)2 nanosheet (NS) was synthesized with the low temperature hydrothermal process and its microstructure was investigated using a high resolution scanning electron microscope and transmission electron microscope. Zinc nitrate hexahydrate was hydrolyzed by hexamethylenetetramine with the same mole ratio and various temperatures, growth times and total concentrations. The optimum hydrothermal processing condition for the best crystallinity of hexagonal β-Ni(OH)2 NS was determined to be with 3.5 mM at 95˚C for 2 h. The prepared Ni(OH)2 NSs were two dimensionally arrayed on a substrate using an air-water interface tapping method, and the quality of the array was evaluated using an X-ray diffractometer. Because of the similarity of the lattice parameter of the (0001) plane between ZnO (wurzite a = 0.325 nm, c = 0.521 nm) and hexagonal β-Ni(OH)2 (brucite a = 0.313 nm, c = 0.461 nm) on the synthesized hexagonal β-Ni(OH)2 NS, ZnO NRs were successfully grown without seeds. At 35 mM of divalent Zn ion, the entire hexagonal β-Ni(OH)2 NSs were covered with ZnO NRs, and this result implies the possibility that ZnO NR can be grown epitaxially on hexagonal β-Ni(OH)2 NS by a soluble process. After the thermal annealing process, β-Ni(OH)2 changed into NiO, which has the property of a p-type semiconductor, and then ZnO and NiO formed a p-n junction for a large area light emitting diode.
        3,000원
        10.
        2008.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        ZnO nanorod gas sensors were prepared by an ultrasound radiation method and their gas sensing properties were investigated for NO gas. For this procedure, 0.01, 0.005 and 0.001M of zinc nitrate hydrate [Zn(NO3)2 · 6H2O] and hexamethyleneteramine [C6H12N4] aqueous solutions were prepared and then the solution was irradiated with high intensity ultrasound for 1 h. The lengths of ZnO nanorods ranged from 200 nm to 500 nm with diameters ranging from 40 nm to 80 nm. The size of the ZnO nanorods could be controlled by the concentration of solution. The sensing characteristics of these nanostructures were investigated for three kinds of sensor. The properties of the sensors were influenced by the morphology of the nanorods.
        4,000원