Concrete structures must maintain their shielding abilities and structural integrity over extended operational periods. Despite the widespread use of dry storage systems for spent nuclear fuel, research on the properties of deteriorated concrete and their impact on structural performance remains limited. To address this significant research gap, static and dynamic material testing was conducted on concrete specimens carefully extracted from the outer wall of the High-flux Advanced Neutron Application ReactOr (HANARO), constructed approximately 30 years ago. Despite its age, the results reveal that the concrete maintains its structural integrity impressively well, with static compression tests indicating an average compressive strength exceeding the original design standards. Further dynamic property testing using advanced high-speed material test equipment supported these findings, showing the consistency of dynamic increase factors with those reported in previous studies. These results highlight the importance of monitoring and assessing concrete structures in nuclear facilities for long-term safety and reliability.
Notice of the NSSC No.2021-14 defines the term ‘Neutron Absorber’ as a material with a high neutron absorption cross section, which is used to prevent criticality during nuclear fission reactions and includes neutron absorbers as target items for manufacture inspection. U.S.NRC report of the NUREG-2214 states that the subcriticality of spent nuclear fuel (SNF) in Dry Storage Systems (DSSs) may be maintained, in part, by the placement of neutron absorbers, or poison plates, around the fuel assemblies. This report mentions the need for Time-Limited Aging Analysis (TLAA) on depletion of Boron (10B) in neutron absorbers for HI-STORM 100 and HISTAR 100. Also, this report mentions that 10B depletion occurs during neutron irradiation of neutron absorbers, but only 0.02% of the available 10B is to be depleted through conservative assumptions regarding the neutron flux or accumulated fluence during irradiation, which supports the continued use of the neutron absorbers in the SNF dry storage cask even after 60 years of evaluated period. There are several types of commercially available neutron absorbers, broadly classified into Boron Carbide Cermets (e.g., Boral®), Metal Matrix Composites (MMC) (e.g., METAMIC), Borated Stainless Steel (BSS), and Borated Al alloy. While irradiation tests for neutron absorbers are primarily conducted during wet storage systems, there are also some prior studies available on irradiation tests for neutron absorbers during dry storage systems. For examples, there is an analysis of previous research on high-temperature irradiation test of metallic materials and identification of limitations in existing methodologies were conducted. Furthermore, an improvement plan for simulating the high-temperature irradiation damage of neutron absorbers was developed. In report published by corrosion society summarizes the evaluation results of the degradation mechanisms for Stainless Steel- and Al-based neutron absorbers used in SNF dry storage systems.
International Atomic Energy Agency defines the term “Poison” as a substance used to reduce reactivity, by virtue of its high neutron absorption cross-section, in IAEA glossary. Poison material is generally used in the reactor core, but it is also used in dry storage systems to maintain the subcriticality of spent fuel. Most neutron poison materials for dry storage systems are boron-based materials such as Al-B Carbide Cermet (e.g., Boral®), Al-B Carbide MMC (e.g., METAMIC), Borated Stainless Steel, Borated Al alloy. These materials help maintain subcriticality as a part of the basket. U.S.NRC report NUREG-2214 provides a general assessment of aging mechanisms that may impair the ability of SSCs of dry storage systems to perform their safety functions during longterm storage periods. Boron depletion is an aging mechanism of neutron poison evaluated in that report. Although that report concludes that boron depletion is not considered to be a credible aging mechanism, the report says analysis of boron depletion is needed in original design bases for providing long-term safety of DSS. Therefore, this study aimed to simulate the composition change of neutron poison material in the KORAD-21 system during cooling time considering spent fuel that can be stored. The neutron source term of spent fuel was calculated by ORIGEN-ARP. Using that source term, neutron transport calculation for counting neutrons that reach neutron poison material was carried out by MCNP®-6.2. Then, the composition change of neutron poison material by neutron-induced reaction was simulated by FISPACT-II. The boron-10 concentration change of neutron poison material was analyzed at the end. This study is expected to be the preliminary study for the aging analysis of neutron poison material about boron depletion.
On a global scale, the storage of spent nuclear fuel (SNF) within nuclear power plants (NPP) has become an important research topic due to limited space caused by approaching capacity saturation. SNF have e been collected over decades of NPP operation, coming up to capacity limitation. In case of Korea, every reactor except Saeul 1 and 2 has reached a SNF storage saturation rate of over 75%. One of the most studied methods for enhancing storage capacity efficiency involves increasing storage density using racks with neutron absorbers. Neutron absorbers like borated stainless steel (BSS) are utilized to manage the reactivity of densely stored SNF. However, major challenges of applying BSS are manufacturing hardness from heterogenous microstructure and mechanical property degradation from helium bubble formation. This study suggests that innovative fabrication methods of 3D printing can be good candidate for easier fabrication and better structural integrity of BSS. Directed energy deposition (DED), one of the 3D printing methods have become major candidate method for various alloys. It deposits alloy powder on base melt surface by high intensity laser, similar with welding process. Powder manufacturing is already demonstrated superior performance compared to casting in ASTM-A887, such as increased mechanical properties, owing to its well distributed chemistry of alloy. Moreover, as its original microstructural property, the formation of micro-pores through DED could lead to long-term performance improvements by capturing helium generated from the neutron absorption of boron. The potential for fabricating complex structure is also among the advantages of DED-produced neutron absorbers. Expected challenge on DED application on BSS is lack of printing condition data, because the 3D printing process have to be kept very careful variables of thermal intensity, powder flux and etc. These processes may get through much of trial & error for initial condition approaching. Nonetheless, as a recommendation of improved neutron absorber for efficient SNF pool storage, the concept of 3D printed BSS stands out as an intriguing avenue for research.
Spent fuels (SFs) are stored in a storage pool after discharge from nuclear power plants. They can be transferred to for the further processes such as dry storage sites, processing plants, or disposal sites. One of important measures of SF is the burnup. Since the radioactivity of SF is strongly dependent on its burnup, the burnup of SF should be well estimated for the safe management, storage, and final disposal. Published papers about the methodology for the burnup estimation from the known activities of important radioactive sources are somewhat rare. In this study, we analyzed the dependency of the burnup on the important radiation source activities using ORIGEN-ARP, and suggested simple correlations that relate the burnup and the important source activities directly. A burnup estimation equation is suggested for PWR fuels relating burnup with total neutron source intensity (TNSI), initial enrichment, and cooling time. And three burnup estimation equations for major gamma sources, 137Cs, 134Cs, and 154Eu are also suggested.
In Korea, borated stainless steel (BSS) is used as a storage rack in spent fuel pools (SFP) to maintain the nuclear criticality of spent fuels. As the number of nuclear power plants and the corresponding amount of spent fuels increased, the density in SFP storage rack also increased. In this regard, maintaining subcriticality of spent nuclear fuels became an issue and BSS was selected as the structural material and neutron absorber for high density storage rack. Since it is difficult to replace the storage rack, corrosion resistance and neutron absorbency are required for long period. BSS is based on stainless steel 304 and is specified in the ASTM A887-89 standard depending on the boron concentration from 304B (0.20-0.29% B) to 304B7 (1.75-2.25% B). Due to the low solubility of boron in austenitic stainless steel, metallic borides such as (Fe, Cr) 2B are formed as a secondary phase. Metallic borides could cause Cr depletion near it, which could decrease the corrosion resistance of the material. In this paper, the long-term corrosion behavior of BSS and its oxide microstructures are investigated through accelerated corrosion experiment in simulated SFP conditions. Because the corrosion rate of austenitic stainless steel is known to be dependent on the Arrhenius equation, a function of temperature, the corrosion experiment is conducted by increasing the experimental temperature. Detail microstructural analysis is conducted using a scanning electron microscope, transmission electron microscope and energy dispersive spectrometer. After oxidation, a hematite structure oxide film is formed, and pitting corrosion occurs on the surface of specimens. Most of the pitting corrosion is found at the substrate surface because the corrosion resistance of the substrate, which has low Cr content, is relatively low. Also, the oxidation reaction of B in the secondary phase has the lowest Gibbs free energy compared to other elements. Furthermore, oxidation of Cr has low Gibbs free energy, which means that oxidation of B and Cr could be faster than other elements. Thus, the long-term corrosion might affect the boron content and the neutron absorption ability of the material. Using boron’s high cross-section for neutrons, the neutron absorption performance of BSS was evaluated through neutron transmission tests. The effect of the corrosion behavior of BSS on its neutron absorption performance was investigated. Samples simulated to undergo up to 60 years of degradation before corrosion through accelerated corrosion testing did not show significant changes in the neutron shielding ability before and after corrosion. This can be explained in relation to the corrosion behavior of BSS. Boron was only leached out from the secondary phase exposed on the surface, and this oxidized secondary phase corresponds to about 0.17% of the volume of the total secondary phase. This can be seen as a very small proportion compared to the total boron content and is not expected to have a significant impact on neutron absorption performance.
A radiation shielding resin with thermal stability and high radiation shielding effect has been developed for the neutron shielding resin filled in the shielding shell of dry storage/transport cask for spent nuclear fuel. Among the most commercially available neutron shielding resins, epoxy and aluminum hydroxide boron carbide are used. But in case of the resin, hydrogen content enhances the neutron shielding effect through optimization of aluminum hydroxide, zinc borate, boron carbide, and flame retardant. We developed a radiation shielding material that can increase the boron content and have thermal stability. Flame retardancy was evaluated for thermal stability, and neutron shielding evaluation was conducted in a research reactor to prove the shielding effect. As a result of the UL94 vertical burning test, a grade of V-0 was received. Therefore, it was confirmed that it had flame retardancy. According to an experiment to measure the shielding rate of the resin against neutron rays using NRF (Neutron Radiography Facility), a shielding rate of 91.54% was confirmed for the existing resin composition and a shielding rate of 96.30% for the developed resin composition. A 40 M SANS (40 M Small Angle Neutron Scattering Instrument) neutron shielding rate test was performed. Assuming aging conditions (6 hours, 180 degrees), the shielding rate was analyzed after heating. As a result of the experiment, the developed products with 99.8740% and 99.9644% showed the same or higher performance.
Recently, the spent fuel pools withdrawn from nuclear power plants in Korea have been saturated. Therefore, specific regulations on the management of spent fuel pools, such as transportation and intermediate storage are needed. The burnup history is directly related to the management of spent nuclear fuel. This is because the decision to handle nuclear fuel may vary depending on the initial concentration of nuclear fuel, the degree to which nuclear fuel is irradiated and radioisotope nuclides are decayed, and the cooling state in the spent nuclear fuel storage tank. The purpose of this study is to determine the burnup of fuel based on the value obtained by scanning the surface of spent nuclear fuel through a neutron detector. Conversely, a database of neutron signals that scan bundles of spent nuclear fuel with an instrument with an already identified combustion history needs to be completed. First of all, the correlation between burnup history and nuclides was identified in previous studies. By setting the burnup history as the input value in the ORIGEN-ARP code, it was possible to identify the radioactive isotopes remaining in the bundle of nuclear fuel. Neutrons can finally be measured based on the amount of nuclide inventory that constitutes spent nuclear fuel. Through MCNP, the neutron detector was simulated and signals were measured to confirm how it correlates with the previously acquired burnup history database. In addition, the M (sub-critical multiplication) value, which is essential for neutron measurement, was checked to confirm the degree to which additional neutrons were generated in spent nuclear fuel in a subcritical state. The target nuclear fuel assembly was CE16×16, WH14×14, and WH17×17, which confirmed the correlation (1) between burnup, enrichment, and cooling time with the previous research topic, TNSI (Total neutron source intensity). / = 0.83. ∙ . ∙ .∙ 1 A neutron signal will be obtained from the case according to each burnup history constituting this database. In particular, PAR=SF, a function that calculates the production amount of the fission product, was used. To confirm the computational logic of SF, it was confirmed whether a reasonable calculation was made by calculating with a nuclide spectrum.
Al-B4C neutron absorbers are currently widely used to maintain the subcriticality of both wet and dry storage facilities of spent nuclear fuel (SNF), thus long-term and high-temperature material integrity of the absorbers has to be guaranteed for the expected operation periods of those facilities. Surface corrosion solely has been the main issue for the absorber performance and safety; however, the possibility of irradiation-assisted degradation has been recently suggested from an investigation on Al-B4C surveillance coupons used in a Korean spent nuclear fuel pool (SFP). Larger radiation damage than expectation was speculated to be induced from 10B(n, α)7Li reactions, which emit about a MeV α-particles and Li ions. In this study, we experimentally emulated the radiation damage accumulated in an Al-B4C neutron absorber utilizing heavy-ion accelerator. The absorber specimens were irradiated with He ions at various estimated system temperatures for a model SNF storage facility (room temperature, 150, 270, and 400°C). Through the in-situ heated ion irradiation, three exponentially increasing level of radiation damages (0.01, 0.1, and 1 dpa or displacement per atom) were achieved to compare differential gas bubble formation at near surface of the absorber, which could cause premature absorber corrosion and subsequential 10B loss in an SNF storage system. An extremely high radiation damage (10 dpa), which is unlikely achievable during a dry storage period, was also emulated through high temperature irradiation (350°C) to further test the radiation resistance of the absorber, conservatively. The irradiated specimens were characterized using HR-TEM and the average size and number density of radiation-induced He bubbles were measured from the obtained bright field (BF) TEM micrographs. Measured helium bubble sizes tend to increase with increasing system (or irradiation) temperature while decrease in their number density. Helium bubbles were found from even the lowest radiation damage specimens (0.01 dpa). Bubble coalescence was significant at grain boundaries and the irradiated specimen morphology was particularly similar with the bubble morphology observed at the interface between aluminum alloy matrix and B4C particle of the surveillance coupons. These characterized irradiated specimens will be used for the corrosion test with high-temperature humid gas to further study the irradiation-assisted degradation mechanism of the absorber in dry SNF storage system.
Nuclear inspection is necessary to verify nuclear activities. If North Korea takes denuclearization, North Korea’s nuclear materials should be verified through non-destructive testing and destructive testing for nuclear material production. Since destructive testing of all substances is impossible, nondestructive testing is essential. Most non-destructive tests are performed by measuring the energy of gamma rays, but the characteristics of nuclear fuel can be evaluated by measuring neutron sources when enclosed with thick shields and when shielding structures are difficult to remove. Before the neutron source evaluation of MAGNOX used by North Korea, the relative characteristics will be evaluated later by analyzing the burnup, enrichment, and cooling time of the spent nuclear fuels discharged from the domestic nuclear power plant. This study evaluated the source strength and major nuclides according to burnup for the WH17×17 nuclear fuel assembly. The depletion calculation was conducted using SCALE 6.2 ORIGEN, and 3.5wt% enrichment, 10, 20, 30, 40, 50, 60 MWd/kg burnup, and five years cooling time, the minimum requirement for transport specified in the notice of the Nuclear Safety Commission, was applied. Although the impact assessment on enrichment should be evaluated with MCNP Tally to consider the fission reaction of the generated neutrons, this study only evaluated the spontaneous fission and (a, n) reactions that occurred first because it only evaluates the burnup impact. As burnup increased, neutron generation increased, and most of the total neutron strength occurred through spontaneous fission from the 10 MWd/kg burnup step. The influence of Pu-240 nuclides was dominant in the 10 MWd/kg burnup step but most neutrons were generated in tiny amounts of Cm- 244 generated from 20 MWd/kg burnup. Since DPRK’s 5 MWe Yongbyon MAGNOX has very low burnup (about 0.7 MWd/kg), the primary neutron sources of 10 MWd/kg, Am-241 and Pu isotopes, especially Pu-240, are expected to be used as indicators for evaluating spent nuclear fuel characteristics. If only specific nuclides are evaluated as major neutron sources at lower burnup than those evaluated in this study, in that case, the accuracy of non-destructive testing can be improved. Additionally, the evaluation according to the enrichment and cooling time should be considered as well.
Medical cyclotrons have been used for dedicated medical of commercial applications such as positron emission tomography (PET) for the past tens of years. These cyclotron facilities have produced positron-emitting radionuclides (i.e. 11C, 13N, 15O, 18F, etc.). Among them, 18F, produced by 18O(p,n)18F reaction is the most widely used which has longer half-life (around 110 m) and lower energy of emitted positrons (around 0.63 MeV). Secondary neutrons produced during 18O(p,n)18F reaction could cause neutron activation of structures, systems, and components of cyclotron facilities. Therefore, International Atomic Energy Agency (IAEA) had addressed that during the operation of cyclotrons, concrete walls become radioactive over time and this radioactivity needs to be characterized for planning of the facility decommissioning. Moreover, several prior studies had estimated the neutron activation and levels of radioactivity of concrete wall of cyclotron facilities. Although those studies assessed the neutron activation of actual cyclotron facilities, however, the purpose of assessment was only for decommissioning each individual facility. Also, the assumptions, conditions or insights of conclusion may be limited to each individual case. For these reasons, this study focused on analysis of effects of major factors (e.g. concrete type, impurity contents of structural materials, etc.) about neutron activation of cyclotron facilities. In this study, the well-known methodology of neutron activation estimation was established and neutron activation products of concrete wall of cyclotron vault was calculated. Also, sensitivity analyses were conducted to figure out the effects of major factors of neutron activation and production of radioactive wastes during decommissioning of the facility. The methodology and results were validated by two steps: comparing with prior studies and comparing with another computer code. Concrete type did not affect that the decision of level of radioactivity waste criteria. Because of relatively longer half-lives, impurity contents of structural materials especially Co and Eu were turned out one of the most important factors for planning the facility decommissioning. It is hard to simply figure out the radioactivity levels of cyclotron facilities, however, rough predictions of minimum period for decay-in-storage as radioactive waste management can be possible with using information of thermal neutron spectra and major impurity nuclides (e.g. 59Co, 151Eu and 153Eu) for minimization of radioactive waste production and relief of charge of radioactive waste management.
Important medical radionuclides for Positron Emission Tomography (PET) are producing using cyclotrons. There are about 1,200 PET cyclotrons operated in 95 countries based upon IAEA database (2020). Besides, including PET cyclotrons, demands for particle accelerators are continuously increasing. In Korea, about 40 PET cyclotrons are in operating phases (2020). Considering design lifetime (about 30-40 years) and actual operating duration (about 20-30 years) of cyclotrons, there will be demands for decommissioning cyclotron facilities in the near future. PET cyclotron produces radionuclides by irradiating accelerated charged particles to the targets. During this phase, nuclear reactions (18O(p,n)18F etc.) produce secondary neutrons which induce neutron activation of accelerator itself as well as surrounding infrastructures (the ancillary subsystems, peripheral equipment, concrete walls etc.). Generally, experienced cyclotron personnel prefer an unshielded cyclotron because of the repair and maintenance time. In unshielded cyclotron, water cooling systems, air compressor, and other equipment and structures could be existed for operating purposes. Almost all the equipment and structures are consisted of steel, and these affect neutron distribution in vault especially thermal neutron on the concrete wall. In addition, most of them can be classified as very low level radioactive wastes by Nuclear Safety and Security notice (NSSC Notice No. 2020-6). However, few studies were estimating radioactivity concentrations (Bq/g) of surrounding structures using mathematical calculation/simulation codes, and they were not evaluating the effect of surrounding structures on neutron distribution. In this study, by using computational neutron transport code (MCNP 6.2), and source term calculation code (FISPACT- II), we evaluated effect of the interaction between surrounding structures (including surrounding equipment) and secondary neutrons. Discrepancies of activation distribution on/in concrete wall will be occur depending on thickness of structure, distance between structures and walls, and consideration of interaction between structures and neutrons. Throughout this study, we could find that the influence of those structures can affect neutron distribution in concrete walls even if, thickness of the structure was small. For estimating activation distribution in unshielded cyclotron vault more precisely, not only considering cyclotron components and geometry of target, but also, considering surrounding structures will be much more helpful.
In Korea, borated stainless steel (BSS) is used as spent fuel pool (SFP) storage rack to maintain nuclear criticality of spent fuels. As number of nuclear power plants and corresponding number of spent fuels increased, density in SFP storage rack also increased. In this regard, maintain subcriticality of spent nuclear fuels was raised as an issue and BSS was selected as structural material and neutron absorber for high density storage rack. Because it is difficult to replace storage rack, corrosion resistance and neutron absorbency are required for long period. BSS is based on stainless steel 304 and it is specified in the ASTM A887-89 standard depending on the boron concentration from 304B (0.20-0.29% B) to 304B7 (1.75-2.25% B). Due to low solubility of boron in austenitic stainless steel, metallic borides such as (Fe, Cr)2B are formed as secondary phase metallic borides could make Cr depletion near it which could decrease the corrosion resistance of material. In this paper, long-term corrosion behavior of BSS and its oxide microstructures are investigated through accelerated corrosion experiment in simulated SFP condition. Because corrosion rate of austenitic stainless steel is known to be dependent on the Arrhenius equation, a function of temperature, corrosion experiment is conducted by increasing the experimental temperature. Detail microstructural analysis was conducted with scanning electron microscope, transmission electron microscope and energy dispersive spectrometer. After oxidation, hematite structure oxide film is formed and pitting corrosions occur on the surface of specimens. Most of pitting corrosions are found at the substrate surface because corrosion resistance of substrate, which has low Cr content, is relatively low. Also, oxidation reaction of B in the secondary phase has the lowest Gibbs free energy compared to other elements. Furthermore, oxidation of Cr has low Gibbs free energy which means that oxidation of B and Cr could be faster than other elements. Thus, the long-term corrosion might affect to boron content and the neutron absorption ability of the material.
The management before disposal of spent nuclear fuel is an essential process for safe management. It is important to determine the amount of nuclide inventory in order to ensure the integrity of spent nuclear fuel, as radiation generated from the nuclides is generated along with residual heat in the spent nuclear fuel. Based on the data on the characteristics of spent nuclear fuel generated in Korea, the correlation equation between burnup and enrichment was derived by referring to overseas cases (Sweden). Source term analysis was performed using the SCALE ORIGEN ARP code by securing the burnup history of nuclear fuel. Calculation was performed by inputting the combustion history of the fuel WH14×14 and WH17×17 as a reference for CE16×16 spent fuel. Through this study, the relationship was identified using the burnup, enrichment, and cooling time factors that influence the characteristics of spent nuclear fuel. In addition, the total source and spectrum data from neutrons and gamma sources were used to find out the characteristics of fuel.
For spent nuclear fuel transferred to dry storage facilities, it is difficult to apply safeguards approaches and long-term integrity verification due to the structural characteristics of the facility. There is a need to check the integrity of the nuclear fuel assembly before transferring it to a dry storage facility and are need to provide information on whether there are any defects. At the Korea Institute of Nuclear Nonproliferation and Control, as a non-destructive testing technology for ensuring Continuity of Knowledge (CoK) of the dry storage facilities, a methodology for reconstructing images by neutron tomographic technique from spent nuclear fuel using a He-4 gas scintillation detector was presented. It is thought that the He-4 gas scintillation detector-based technology can be used to verify the defect of the nuclear fuel assembly. This methodology must be accompanied by accurate neutron measurements. The place where the technique was conducted is surrounded by a concrete wall. Concrete contains water molecules, which can affect neutron measurements. In this study, reconstruction images based on neutron measurements and MCNP simulations are compared to verify the effects of the concrete. Neutron measurements were performed by measuring Cf-252 neutron sources in a 1/10 lab-scale TN- 32 cask with six He-4 gas scintillation detectors as an array. Neutron sources are fixed at each point in the cask, and the He-4 detector array is rotated from 0° to 360° at 10° intervals to reconstruct the image using the filtered back-projection (FBP) method. Also, in MCNP reconstructed images, there are two versions depending on whether concrete wall. The source image and ring shape were found in the measurement-based thermal neutron reconstruction image, which was similar to the simulation image that considering the concrete effects. On the other hand, in the simulation reconstruction image without the concrete, only the shape of the source was found. Thus, the effect of concrete should be considered when performing the neutron tomographic techniques using He-4 gas scintillation detectors.