검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 143

        4.
        2020.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The effects of fast neutron irradiation on the electrical and optical properties of Li (3 at%) doped ZnSnO (ZTO) thin films fabricated using a sol-gel process are investigated. From the results of Li-ZTO TFT characteristics according to change of neutron irradiation time, the saturation mobility is found to increase and threshold voltage values shift to a negative direction from 1,000 s neutron irradiation time. X-ray photoelectron spectroscopy analysis of the O 1s core level shows that the relative area of oxygen vacancies is almost unchanged with different irradiation times. From the results of band alignment, it is confirmed that, due to the increase of electron carrier concentration, the Fermi level (EF) of the sample irradiated for 1,000 s is located at the position closest to the conduction band minimum. The increase in electron concentration is considered by looking at the shallow band edge state under the conduction band edge formed by fast neutron irradiation of more than 1,000 s.
        4,000원
        6.
        2018.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The Galactic Center is one of the most dense stellar environments in the Galaxy and is considered to be a plausible place to harbor many neutron stars. In this brief review, we summarize observational efforts in search of neutron stars within a few degrees about the Galactic Center. Up to 10% of Galactic neutron stars may reside in this central region and it is possible that more than a thousand neutron stars are located within only ∼ 25'' about the Galactic Center. Based on observations, we discuss prospects of detecting neutron stars in the Galactic Center via gravitational waves as well as electromagnetic waves.
        4,000원
        7.
        2018.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Fatigue crack growth retardation of 304 L stainless steel is studied using a neutron diffraction method. Three orthogonal strain components(crack growth, crack opening, and through-thickness direction) are measured in the vicinity of the crack tip along the crack propagation direction. The residual strain profiles (1) at the mid-thickness and (2) at the 1.5 mm away from the mid-thickness of the compact tension(CT) specimen are compared. Residual lattice strains at the 1.5 mm location are slightly higher than at the mid-thickness. The CT specimen is deformed in situ under applied loads, thereby providing evolution of the internal stress fields around the crack tip. A tensile overload results in an increased magnitude of the compressive residual stress field. In the crack growth retardation, it is found that the stresses are dispersed in the crack-wake region, where the highest compressive residual stresses are measured. Our neutron diffraction mapping results reveal that the dominant mechanism is by interrupting the transfer of stress concentration at the crack tip.
        4,000원
        8.
        2015.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Fatigue crack growth experiments were carried out on a 304 L stainless steel compact-tension(CT) specimen under load control mode. Neutron diffraction was employed to quantitatively measure the residual strains/stresses and the evolution of stress fields in the vicinity of a propagating fatigue-crack tip. Three principal stress components (i.e. crack growth, crack opening, and through-thickness direction stresses) were examined in-situ under loading as a function of distance from the crack tip along the crack-propagation path. The stress/strain fields, measured both at the mid-thickness and near the surface of the CT specimen, were compared. The results show that much higher compressive residual stress fields developed in front of the crack tip near the surface than developed at the mid-thickness area. The change of the stresses ahead of the crack tip under loading is more significant at the mid-thickness area than it is near the surface.
        3,000원
        9.
        2015.09 KCI 등재 구독 인증기관·개인회원 무료
        In this paper, the numerical results concerning different orbits of a 3D axisymmetric non-rotating galactic potential are presented. We use Paczynski's gravitational potential with different birth velocity distributions for the isolated old Neutron Star (NS) population. We note some smooth non-constant segments corresponding to regular orbits as well as the characterization of their chaoticity. This is strongly related to the effect of different kick velocities due to supernovae mass-loss and natal kicks to the newly- formed NS. We further confirm that the dynamical motion of the isolated old NSs in the gravitational field becomes obvious, with some significant diffraction in the symmetry of their orbital characteristics.
        10.
        2015.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recent discovery of 2M⊙ neutron stars in white dwarf-neutron star binaries, PSR J1614-2230 and PSR J0348+0432, has given strong constraints on the maximum mass of neutron stars. On the other hand, all well-measured neutron star masses in double neutron star binaries are still less than 1.5M⊙. These observations suggest that the neutron star masses in binaries may depend on the evolution process of neutron star binaries. In addition, recent works on LMXB (low-mass X-ray binaries) provides us the possibility of estimating the masses and radii of accreting neutron stars in LMXBs. In this talk, we discuss the implications of recent neutron star observations to the neutron star equation of states and the related astrophysical problems. For the evolution of neutron star binaries, we also discuss the possibilities of super-Eddington accretion onto the primary neutron stars.
        3,000원
        11.
        2015.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We first deduce a uniform formula forthe Fermi energy of degenerate and relativistic electrons in the weak-magnetic field approximation. Then we obtain an expression of the special solution for the electron Fermi energy through this formula, and express the electron Fermi energy as a function of electron fraction and matter density. Our method is universally suitable for relativistic electron- matter regions in neutron stars in the weak-magnetic field approximation.
        3,000원
        12.
        2014.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The HANARO reactor constructed from Jan. 1985 to April 1995, and a major utilization system, the Cold Neutron Research Facility was completed Nov. 2010. The cold neutron research facility consists of a Cold Neutron Source, a process system, a neutron guide and a Spectrometer. A moderator is utilized to transform thermal neutrons into cold neutrons. A moderator cell accommodates the moderator. The inner assembly contains an aluminum moderator cell connected to a stainless steel heat exchanger by a bi-metallic transition joint. An In-Pool Assembly is welded to this inner assembly and a double flexible pipe, and a vacuum chamber is inserted. After HANARO reactor shutdown, the in-pool assembly was installed at a cold neutron hole in the reactor pool. We confirmed a precise installation by using an underwater TV camera for a nuclear reactor inspection. In-pool assembly connected to double flexible pipe each system in the Cold Neutron Research Facility. After cold neutron research facility operated, the reliability of vacuum system, helium refrigerator system, gas blanket system and hydrogen system for maintenance was confirmed.
        4,000원
        13.
        2013.04 구독 인증기관·개인회원 무료
        14.
        2010.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Magnetars are neutron stars possessing a magnetic field of about 1014-1015 G at the surface. Thermodynamic properties of neutron star matter, approximated by pure neutron matter, are considered at finite temperature in strong magnetic fields up to 1018 G which could be relevant for the inner regions of magnetars. In the model with the Skyrme effective interaction, it is shown that a thermodynamically stable branch of solutions for the spin polarization parameter corresponds to the case when the majority of neutron spins are oriented opposite to the direction of the magnetic field (i.e. negative spin polarization). Moreover, starting from some threshold density, the self-consistent equations have also two other branches of solutions, corresponding to positive spin polarization. The influence of finite temperatures on spin polarization remains moderate in the Skyrme model up to temperatures relevant for protoneutron stars. In particular, the scenario with the metastable state characterized by positive spin polarization, considered at zero temperature in Phys. Rev. C 80, 065801 (2009), is preserved at finite temperatures as well. It is shown that, above certain density, the entropy for various branches of spin polarization in neutron matter with the Skyrme interaction in a strong magnetic field shows the unusual behavior, being larger than that of the nonpolarized state. By providing the corresponding low-temperature analysis, we prove that this unexpected behavior should be related to the dependence of the entropy of a spin polarized state on the effective masses of neutrons with spin up and spin down, and to a certain constraint on them which is violated in the respective density range.
        4,000원
        15.
        2008.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ni-W(1-5 at.%) alloy rods were made by powder metallurgy process including powder mixing, compacting and subsequent sintering. Ni and W powder of appropriate compositions were mixed by a ball milling and isostatically pressed in a rubber mold into a rod. The compacted rods were sintered at at a reduced atmosphere for densification. The lattice parameters of Ni-W alloys were estimated by a high resolution neutron powder diffractometer. All sintered rods were found to have a face centered cubic structure without any impurity phase, but the diffraction peak locations were linearly shifted with increasing W content. The lattice parameter of a pure Ni rod was which is consistent with the value reported in JCPDS data. The lattice parameter of N-W alloy rods increased by for 1 atomic % of W, which indicates the formation of a Ni-W solid solution due to the substitution of nickel atoms by tungsten atoms of larger size.
        4,000원
        18.
        2006.09 구독 인증기관·개인회원 무료
        Tungsten-molydiside was synthesized by self-propagating high temperature synthesis (SHS). The SHS product with the initial composition of (0.5Mo+0.5W+2Si) contains 23.9% , 40.89% with remaining 9.11% Mo, 9.16% Si and 16.94%W. Lattice parameters of the and determined by Rietvelt analysis were a=0.3206 nm, c=0.7841 nm and a=0.3212 nm, c=0.7822 nm, respectively.
        19.
        2006.09 구독 인증기관·개인회원 무료
        Effects of doping on the electromagnetic properties in the BiSrCaCuO superconductors. The electromagnetic properties of doped and undoped BiSrCaCuO superconductor were evaluated to investigate the contribution of the pinning centers to the magnetic effect. It was confirmed experimentally that a large amount of magnetic flux was trapped in the doped sample than that in the undoped one, indicating that the pinning centers of magnetic flux are related closely to the occurrence of the magnetic effect. It is considered that the area where normal conduction takes place increases by adding and the magnetic flux penetrating through the sample increases. The results suggested that Ag acts to increase pinning centers of magnetic flux, contributing to the occurrence of the electromagnetic properties.
        20.
        2006.09 구독 인증기관·개인회원 무료
        Magnetic characteristics observed in BiSrCaCuO superconductor were studied. In the measurement of differential conductance, it was cleared that the mechanism of magnetic memory effect couldn't be explained by using conventional flux flow model. By changing the density of external magnetic flux, changes in inductance of a coil in which a superconducting bar inserted were also measured. The results showed that the filament model was valid to explain the mechanism of the occurrence of a voltage in superconducting sample. It was concluded that the electromagnetic characteristics arose from the interaction between the trapped magnetic flux and weak link of the filament formed in the superconducting bulk.
        1 2 3 4 5