In this experiment, we determined the effect of curcumin supplementation in freezing buffer for miniature pig sperm cryopreservation. Each ejaculate was diluted with modified Modena B extender and mixed with lactose-egg yolk (LEY extender, 80% v/v lactose solution [310 mM], 20% v/v egg yolk, and100 μg/mL kanamycin sulfate) and LEY-glycerol Orvus ES Paste (LEYGO, 89.5% v/v LEY, 5% v/v glycerol, 1.5% v/v Orvus ES Paste), 100 mM trehalose supplemented with 0, 10, 50, 100, and 500 μM of curcumin from turmeric, respectively. Following equilibration, the 0.5 mL French straws were frozen and plunged into LN2 tank for 7 days at least. Sperm parameter and oxidative byproducts were determined by the computer assisted sperm motility analysis (CASA) and fluorescence-activated cell sorting (FACS) as compared with each groups.Supplementation of curcumin had no effect on sperm motility, progressive motility and curvilinear velocity. However, average-path velocity and straight-line velocity were significantly higher in 10 μM curcumin group (100.9±8.8 μm/s, 61.7±2.9 μm/s, respectively) than control group (77.8±3.9 μm/s, 46.4±3.0 μm/s, respectively) (p < 0.05). In addition, the level of the O2 radical and H2O2 were comparatively decreased in curcumin groups by evaluation of ethidium and DCF fluorescence. According to the results, curcumin can improve sperm kinetic variables and alleviate ROS induced cryoinjury to pig sperm.
This study was conducted to examine the optimal concentration and treatment time of antioxidants for inhibition of the ROS generation in bovine somatic cell nuclear transfer (SCNT) embryos. Bovine oocytes were activated parthenogenetically, during which oocytes were treated with various antioxidants to determine the optimal concentrations and kind of antioxidants. Determined antioxidants were applied to oocytes during in vitro maturation (IVM) and/or SCNT procedures. Finally, antioxidant-treated SCNT embryos were compared with in vitro fertilized (IVF) embryos. H2O2 levels were analyzed in embryos at 20 h of activation, fusion or insemination by staining of embryos in 10 μM 2'7'-dichlorodihydrofluorescein diacetate (H2DCFDA) dye, followed by fluorescence microscopy. H2O2 levels of parthenogenetic embryos were significantly lower in 25 μM β- mercaptoethanol (β-ME), 50 μM L-ascorbic acid (Vit. C), and 50 μM L-glutathione (GSH) treatment groups than each control group (24.0±1.5 vs 39.0±1.1, 29.7±1.0 vs 37.0±1.2, and 32.9±0.8 vs 36.3±0.8 pixels/embryo, p<0.05). There were no differences among above concentration of antioxidants in direct comparison (33.6±0.9~35.2±1.1 pixels/embryo). Thus, an antioxidant of 50 μM Vit. C was selected for SCNT. H2O2 levels of bovine SCNT embryos were significantly lower in embryos treated with Vit. C during only SCNT procedure (26.4±1.1 pixels/embryo, p<0.05) than the treatment group during IVM (29.9±1.1 pixels/embryo) and non-treated control (34.3±1.0 pixels/embryo). Moreover, H2O2 level of SCNT embryos treated with Vit. C during SCNT procedure was similar to that of IVF embryos. These results suggest that the antioxidant treatment during SCNT procedures can reduce the ROS generation level of SCNT bovine embryos.
The present study was conducted to examine the generation of reactive oxygen species (ROS) during micromanipulation procedures in bovine somatic cell nuclear transfer (SCNT) embryos. Bovine enucleated oocytes were electrofused with donor cells, activated by a combination of Ca-ionophore and 6-dimethylaminopurine culture. Oocytes and embryos were stained in dichlorodihydrofluorescein diacetate or 3'-(p-hydroxyphenyl) fluorescein dye and the H2O2 or ˙OH radical levels were measured. In vitro fertilization (IVF) was performed for controls. The samples were examined with a fluorescent microscope, and fluorescence intensity was analyzed in each oocyte and embryo. The H2O2 and ˙OH radical levels of reconstituted oocytes were increased during manipulation (37.2~49.7 and 51.0~55.2 pixels, respectively) as compared to those of mature oocytes (p<0.05). During early in vitro culture, the ROS levels of SCNT embryos were significantly higher than those of IVF embryos (p<0.05). These results suggest that the cellular stress during micromanipulation procedures can generate the ROS in bovine SCNT embryos.
The present study was conducted to examine the reactive oxygen species (ROS) generation levels and subsequent DNA damage in the bovine cultured somatic cells. Bovine ear skin cells were classified by serum starvation, confluence and cycling cells. Cells were stained in 10 μM dichlorohydrofluorescein diacetate (H2DCFDA) or 10 μM hydroxyphenyl fluorescein (HPF) dye to measure the H2O2 or ˙OH radical levels. The samples were examined with a fluorescent microscope, and fluorescence intensity was analyzed in each cell. H2O2 and ˙OH radical levels of cultured somatic cells were high in confluence group (7.1±0.7 and 8.4±0.4 pixels/cell, respectively) and significantly low in serum starvation group (4.9±0.4 and 7.0±0.4 pixels/cell, respectively, p<0.05). Comet tail lengths of serum starvation (148.3±5.7 μm) and confluence (151.1±5.0 μm) groups were found to be significantly (p<0.05) increased in comparison to that of cycling group (137.1±7.5 μm). These results suggest that the culture type of donor cells can affect the ROS generation, which leads the DNA fragmentation of the cells.
The present study was conducted to examine the reactive oxygen species (ROS) generation levels in porcine parthenogenetic embryos. Porcine in vitro matured oocytes were activated by the combination of electric stimulus and 6‐ DMAP before in vitro culture. Porcine oocytes and parthenogenetic embryos were stained in 10 μM dichlorohydrofluorescein diacetate (DCF) or 10 μM hydroxyphenyl fluorescein (HPF) dye each for 30 min at 39℃. The fluorescent emissions from the samples were recoded as JPEG file and the intensity of fluorescence in oocytes and embryos were analyzed. H2O2 and ˙OH radical levels of porcine oocytes were reduced immediately after electric stimulation. However, H2O2 and ˙OH radical levels of parthenogenetic embryos were increased with time elapsed after electric stimulation from 0 h to 3 h and after DMAP culture. During in vitro culture, H2O2 and ˙OH radical levels were gradually increased from the one‐cell stage to the two‐ and four‐cell stages. The result of the present study suggests that the ROS was not increased by electric pulse in porcine embryos. Rather than it seems to be associated with the stage of development and the culture condition.
Cordycepin (3’-deoxyadenosin), a polyadenylation specific inhibitor, is the main functional component in Cordyceps militaris which is one of the top three famous traditional Chinese medicine. It has been shown to possess many pharmacological activities including immunologically stimulating, anti-cancer, anti-bacterial, and anti-virus, anti-infection effects. However, its anti-cancer molecular mechanisms are poorly understood. In this study, the apoptotic effects by cordycepin were investigates in human leukemia cells. Treatment of cordycepin significantly inhibited cells growth in a concentrationdependent manner by inducing apoptosis, as evidenced by morphological change and apoptotic cell death such as formation of apoptotic bodies, DNA fragmentation and increased populations of sub-G1. Induction of apoptosis by cordycepin was associated with modulation of Bcl-2 and inhibitor of apoptosis proteins (IAP) family expression. Cordycepin also increased reactive oxygen species (ROS) generation, activation of casepase-3, caspase-8, caspase-9, cleavage of poly(ADP-ribose) polymerase (PARP), β-catenin and phospholipase C (PLC)-γ1 protein. The quenching of ROS generation by N-acetyl-L-cysteine administration, a scavenger of ROS, reversed the cordycepin-induced apoptosis effects. Theresults suggested that cordycepin may be a potential chemotherapeutic agent for the treatment of leukemia patients [This work was supported by Blue-Bio Industry RIC at Dong-Eui University as a RIC (08-06-07) program of ITEP under Ministry of Knowledge Economy].
Background : Osteoclasts as multinucleated cells originate from hematopoietic monocyte/ macrophage precursor cell, shows the bone absorption through the commitment, differentiation, fusion, and bone resorption stages by regulation of M-CSF and RANKL. It has been reported a significant negative correlation between the increase of oxidative stress and the bone density, and when RANKL reaction to the osteoclasts precursor cells is mainly generated ROS is due to increased activity of NADPH oxidase1 (NOX1), and these ROS act as a factor which promotes osteoclasts differentiation. Thus, RANKL signaling process is important that excessive osteoclast formation and differentiation inhibited through the regulation of each step. Methods and Results : F3570 ethanol extract showed relatively high activity at in-vitro antioxidant activity. F3570 water extract inhibited ROS generation in RAW 264.7 cells stimulated with H2O2 and RANKL, even at low concentrations. The inhibitory effect of osteoclast differentiation on F3570 water extract was confirmed that shown through NF-κB pathway, MAPK pathway including ERK and JNK. F3570 ethanol extract is considered to be regulated by the p38 MAPK and the other signaling pathway. Also, F3570 both water and ethanol extract were significantly reduced gene expression such as TRAP, calcitonin receptors and integrin β3 of RANKL-induced mature osteoclast in the bone resorption stage. Conclusion : Through this study, F3570 extract revealed an outstanding inhibitory effect and signaling mechanisms in osteoclast differentiation induced by RANKL. These results suggest that F3570 is bone diseases associated with aging or osteoporosis caused by menopause in an aging society is expected to be a superior candidate for the treatment or the prevention
This study carried out a laboratory scale plasma reactor about the characteristics of chemically oxidative species (․OH, H2O2 and O3) produced in dielectric barrier discharge plasma. It was studied the influence of various parameters such as gas type, 1st voltage, oxygen flow rate, electric conductivity and pH of solution for the generation of the oxidant. H2O2 and O3.) H2O2 and O3 was measured by direct assay using absorption spectrophotometry. OH radical was measured indirectly by measuring the degradation of the RNO (N-Dimethyl-4-nitrosoaniline, indicator of the generation of OH radical). The experimental results showed that the effect of influent gases on RNO degradation was ranked in the following order: oxygen > air >> argon. The optimum 1st voltage for RNO degradation were 90 V. As the increased of 1st voltage, generated H2O2 and O3 concentration were increased. The intensity of the UV light emitted from oxygen-plasma discharge was lower than that of the sun light. The generated hydrogen peroxide concentration and ozone concentration was not high. Therefore it is suggested that the main mechanism of oxidation of the oxygen-plasma process is OH radical. The conductivity of the solution did not affected the generation of oxidative species. The higher pH, the lower H2O2 and O3 generation were observed. However, RNO degradation was not varied with the change of the solution pH.
This study assessed the characteristics of emission and cell toxicology of Methylethylketone(MEK) in ambient air of industrial area. MEK is produced by the oxidation of sec-butyl alcohol and used as the solvent for making ink, printing, coating of film, bonding material and drug extraction. The MEK concentrations in the ambient-air of industrial area in Gimhae City was detected in the range of 25.4~1,580 ㎍/㎥ with an average 297.4 ㎍/㎥. The concentration of MEK showed a descending tendency from April to August followed by its increased tendency since then. The effects of MEK on the human lung cancer A549 cells was examined by the generation of Reactive Oxygen Species(ROS) and cytotoxicity. The range of MEK concentration detected in the area induced ROS generation affecting the oxidation state with a little effects on the viability of the cells.