검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        1.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Black phosphorus (BP) is incorporated in the electrochemical detection of uric acid (UA) to form few layers of BP nanosheets (BPNS)-modified glassy carbon electrodes (BPNS/GCE), investigated by means of ultrasound-assisted liquid-phase exfoliation. We find a significant increase in the peak current magnitude and positive potential shift in the electrochemical response of BPNS/GCE, which may be attributed to the larger specific surface area and good charge transfer ability of BPNS. Further, the electrochemical response of BPNS/GCE is evaluated under different conditions to achieve the optimal conditions. UA detection using differential pulse voltammetry (DPV) shows linear response within the range of 1–1000 μM with a detection limit of 0.33 μM. This work reveals new applications of BP nanomaterials in the electrochemical sensing, thereby promoting further advancement in terms of practical applications of two-dimensional nanomaterials.
        4,000원
        2.
        2016.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Phosphorus is an essential and irreplaceable element for all living organisms and its resource is limited. Significant amount of used phosphorus is collected in sewage treatment plant as sludge. Sludge ash after incineration contains about 10% of phosphorus in dry mass basis, which is comparable to phosphate rocks, and it is an important source of phosphorus recovery. Acid and alkali were used to leach phosphorus from sludge ash and compared for their leaching kinetics and performance. Phosphorus leaching by NaOH was fast and 0.2 N and 2 N NaOH leached 49% and 56% of the total phosphorus in the sludge ash at the L/S ratio of 100. Phosphorus leaching by sulphuric acid and hydrochloric were very fast and most of the phosphorus was leached in 5 minutes. In case of sulphuric acid 95% of the total phosphorus in the sludge ash was leached by 0.2 N at the L/S ratio of 100 and 93% was leached by 1 N at the L/S ratio of 10. 1 N hydrochloric acid leached 99% of the total phosphorus at the L/S ratio of 10. The results showed acids were more effective than alkali for phosphorus leaching from sludge ash and hydrochloric acid leached more phosphorus than sulphuric acid.
        4,000원
        3.
        2005.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Reaction intermediates PCP/BZA (PBI) and tetramethylene bis(orthophosphate)(TBOP) were synthesized from polycaprolactone (PCP) and benzoic acid (BZA) and from pyrophosphoric acid and 1,4-butanediol, respectively. Benzoic acid modified polyesters containing phosphorus (APTB-S, -10, -15) were synthesized by polycondensation of the prepared PBI (containing 5, 10, 15wt% of benzoic acid), TBOP, adipic acid, and 1,4-butanediol. Network structured PU flame-retardant coatings (APHD) were prepared by curing the synthesized benzoic acid modified polyesters containing phosphorus (APT B - 5 , -10, -15) with hexamethylene diisocyanate (HDI)-timer. From the TGA analysis of APTBs, it was found that the afterglow decreased with the amount of BZA content at the high temperatures. With the introduction of BZA, the film viscosity and film hardness of APHD decreased. With the introduction of caprolactone group, the flexibility, impact resistance, accelerated weathering resistance of APTBs increased. Flame retardancy of the coatings was tested. In a vertical burning method, APHD shows 210~313 seconds, which indicates that the coatings are good flame-retardant coatings. Moreover, the amount of afterglow and flame retardancy of the coatings are decreased with increasing BZA content.
        4,500원
        4.
        2004.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PU flame-retardant coatings (APHD) containing phosphorous were prepared by blending of hexamethylene diisocyanate-trimer, white pigment, dispersing agent, flowing agent, and previously prepared benzoic acid modified polyester (APTB) that contains phosphorous. Physical properties of the prepared APHD were examined. With the introduction of BZA (contained in APTB), the film viscosity and film hardness of APHD decreased. With the introduction of caprolactone group, the flexibility, impact resistance, accelerated weathering resistance of APTBs increased. Flame retardancy of the coatings was tested. In a vertical burning method, APHD shows 210~313 seconds, and in a 45˚ Meckel burner method, shows 1.3~4.0cm2 of char length, which indicates that the coatings are good flame-retardant coatings. Moreover, the amount of afterglow and flame retardancy of the coatings are decreased with increasing BZA content.
        4,000원
        5.
        2004.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Reaction intermediates PCP/BZA (PBI) and tetramethylene bis(orthophosphate) (TBOP) wer synthesized from polycaprolactone (PCP) and benzoic acid (BZA) and from pyrophosphoric acid and 1,4-butanediol, respectively. Benzoic acid modified polyesters containing phosphorus (APTB-5, -10, -15) were synthesized by polycondensation of the prepared PBI (containing 5, 10, 15wt% of benzoic acid), TBOP, adipic acid, and 1,4-butanediol. The structure and characteristics of APTBs were examined using FT-IR, NMR, GPC, and TGA analysis. The increase of the amount of BZA in the synthesis of APTBs resulted in decrease in average molecular weight and kinematic viscosity. From the TGA analysis of APTBs, it was found that the afterglow decreased with the amount of BZA content at the high temperatures.
        4,200원
        6.
        2020.03 KCI 등재 서비스 종료(열람 제한)
        This study was conducted to evaluate the effect of phosphorus acid (H3PO3) addition to the horticultural bed soil on the initial growth of red pepper (Capsicum annuum L. cv.), cucumber (Cucumis sativus L. cv.), and kimchi cabbage (Brassica campestris L. ssp. pekinensis (Lour.) Rupr. cv.). The stem heights of red pepper and cucumber were 46.1% and 23.0% greater in the 50 mg/L of phosphorus acid treatment than the untreated (control). Further, the stem diameter of pepper and cucumber were 48.7% and 23.0% greater in the 50 mg/L of phosphorus acid treatment than the control. In addition, the number of kimchi cabbage leaves was 47.5% greater in the 50 mg/L of phosphorus acid treatment than the control. The dry weights of red pepper, cucumber and kimchi cabbage were 72.9%, 16.5%, and 30.4% heavier in the 50 mg/L than the control, respectively. Cations (K, Ca, and Mg) and total phosphorus (T - P) were quantitatively analyzed for these three horticultural crops. The concentrations of K, Ca, and Mg, and T - P were higher in the 50 mg/L of phosphorus acid than the control, respectively. Based on the results obtained in this study, it appears that treatment of phosphorus acid in horticultural bed soil enhanced the growth of red pepper, cucumber and Kimchi cabbage.
        7.
        2014.03 KCI 등재 서비스 종료(열람 제한)
        Incinerated sewage sludge ash (ISSA) is regarded as a valuable resource having great potential for the recycling ofphosphorus. The P content of ISSA is known as around 10% as a P. Therefore, this study was undertaken to investigatethe precipitation and separation characteristics of phosphorus from the acid-extracted solution of ISSA. The incineratedsewage sludge ash was leached by 1N sulfuric acid with solid/liquid ratio of 10 for 30min. The extracted solutioncontained about 1.1% of P and other metals, Al, Fe, Ca and Mg, with over than 1,000mg/L. Some heavy metals suchas Cu, Pb and Cr are presented as impurities as well. Most of Al and Fe in the extracted solution were precipitated withP when titrating it to pH 3.6. The precipitated form were assumed to AlPO4, FePO4·2H2O respectively, and Pb and Crwere precipitated in this stage as well. At this experiment, about 62.9% of the initial P was precipitated and removedfrom the solution. It was also find that all of the P extracted can not be recovered as a precipitate with a simple additionof NaOH, even though titrated to pH 11.6. The precipitated P also contained some impurities such as Al, Fe, and someheavy metals, which means that further researches are needed for the efficient separation and recovery of P from ISSA.