검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 182

        1.
        2024.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Coal tar pitch is a raw material that can be made from various carbon materials such as activated carbon, carbon fiber, and artificial graphite through heat treatment. In particular, it is an important raw material used as a binder and impregnated pitch when manufacturing carbon composite materials. In order to improve the physical properties of such a carbon composite material, the content of β-resin is an important factor. Although β-resin plays the role of a binder, it also corresponds to fixed carbon, so it can determine the physical properties after carbonization. In this study, we compared the physical properties of coal tar pitch various temperature ramping rate, and found through Py-GC/MS analysis that intermediate materials were generated by heteroatoms such as oxygen and nitrogen. MALDI-TOF/MS analysis revealed that these intermediate materials overlapped with the molecular weight region of β-resin. Therefore, the content of β-resin is in the following order: 430–5 (12.8 wt%), 430–10 (10.2 wt%), and 430–2 (6.3 wt%), and when 430–5 is used as a binder, the highest density appeared at 1.75 g/cm3. However, such intermediate materials undergo thermal decomposition even at temperatures above 900 °C. As a result, after carbonization, 430–5 had a density of 1.60 g/cm3, which was similar or lower than that of 430–2 (1.72 → 1.63 g/ cm3) and 430–10 (1.73 → 1.61 g/cm3). From these results, it is expected that if the heteroatom content is distributed in an appropriate amount and the heating rate is well controlled, it will be possible to maintain a high density even after carbonization while ensuring a high beta-resin content.
        4,000원
        2.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A substantial quantity of discarded tires has inflicted harm on the environment. Microwave pyrolysis of discarded tires emerges as an efficient and environmentally friendly method for their recycling. This research innovatively utilizes the characteristics of microwave rapid and selective heating to pyrolyze waste tires into porous graphene under the catalysis of KOH etching. Moreover, this study comprehensively investigates the dielectric characteristics and heating behavior of waste tires and different proportions of waste tire–KOH mixtures. It validates the preparation of graphene through KOH-catalyzed microwave pyrolysis of waste tires, tracking morphological and structural changes under varying temperature conditions. The results indicate that optimal dielectric performance of the material is achieved at an apparent density of 0.68 g/cm3 at room temperature. As the temperature increases, the dielectric constant gradually rises, particularly reaching a notable increase around 700 °C, and then stabilizes around 750 °C. Additionally, the study investigates the penetration depth and reflection loss of mixtures with different proportions, revealing the waste tire–KOH mass ratio of 1:2 demonstrates favorable dielectric properties. This research highlights the impressive microwave responsiveness of the waste tire–KOH mixture, Upon the addition of KOH, the mixed material exhibits an augmented dielectric constant and relative dielectric constant, supporting the viability of KOH-catalyzed microwave pyrolysis for producing porous graphene from waste tires. This method is expected to provide a new method for the valuable reuse of waste tires and a technology for large-scale, efficient and environmentally friendly production of graphene.
        4,800원
        3.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        전 세계적으로 배출되는 폐플라스틱을 석유화학제품으로 재활용하는 순환경제가 본격화되고 있다. 따라서, 화학적 재활용 중 하나인 폐플라스틱 열분해유 생산을 위한 파일럿 규모의 시설도 건설되 고 상업적 생산이 시작되고 있다. 본 연구에서는 파일럿 플랜트에서 조건별로 생산된 총 4종의 폐플라 스틱 열분해유를 활용하기 위해 분리된 각각의 유분의 물성 및 구성성분 분석을 통해 나프타, 선박유 및 보일러유 등 다양한 원료‧연료 등으로 사용이 가능한지 확인해보고자 한다. 폐플라스틱 열분해유의 넓은 비점으로 인하여 경질유분은 상압 및 감압증류를 통해 분리하였고, 중질유분은 감압증류를 통해 분 리하였다. 경질유분(fraction 1)은 나프타를 목적으로 물리적 특성, 탄소분포 및 구성성분을 분석하였는 데, 탄소분포, 비점 등은 적합하지만, 초기 폐플라스틱 열분해유에 비해 염소 함량, 올레핀 및 방향족이 높아 전처리공정이 필요하다, 또한 중질유분(fraction 2)은 보일러유 등을 목적으로 할 때, 적합한 밀도, 동점도, 발열량 및 윤활성 등 물리적 특성을 가졌지만, Si 및 전산가 등이 높았다. 분리하고 남은 잔류물 (residue)은 높은 발열량, 낮은 황 함량, 산소 함량 등은 C중유급 연료로서의 사용이 가능할 것으로 판단되었다. 결론적으로, 분리된 폐플라스틱 열분해유에서 분리되는 모든 유분은 전처리만 가능하다면 나프 타 원료뿐만 아니라 저급 연료로도 활용이 가능하리라 판단된다.
        5,200원
        4.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Natural gas pyrolysis produces hydrogen and solid carbon at high temperatures in an oxygen-free environment. This study has evaluated the characteristics of solid carbon obtained from the pyrolysis of methane and natural gas by using molten tin (Sn) at 900–1000 °C. Material characterization outcomes revealed that solid carbon produced at 1000 °C has a spherical morphology. At this temperature, methane and natural gas pyrolysis have resulted in the arrangement of nanocrystalline carbon spheres with average sizes of 635 and 287 nm, respectively. Similarly, pyrolysis at 900 °C and 950 °C has yielded nanocrystalline carbon featuring diverse morphologies such as spheres, fibrous, and irregularly shaped particles. Thermogravimetric analysis revealed that solid carbon products obtained from methane and natural gas pyrolysis at 1000 °C have higher thermal stability compared to commercial carbon black N991. Surface area analysis has indicated that solid carbon from natural gas pyrolysis at 1000 °C has 4.3- and 5.3-times higher surface area compared to the commercial carbon black N991 sample and graphite flakes, respectively. These findings offered insights into optimizing pyrolysis reactor design and operation to generate valuable solid carbon by-products while maximizing hydrogen production.
        4,800원
        5.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Pyrolysis of methane is a carbon-economic method to obtain valuable carbon materials and COx- free H2, under the carbon peaking and carbon neutrality goals. In this work, we propose a methane pyrolysis process to produce graphite and H2 using bubble column reactor containing NiO/Al2O3 and NaCl–KCl (molten salt). The process was optimized by the different amounts of NaCl–KCl, the CH4/ Ar ratio and temperature, indicating that the CH4 conversation rate could reach 92% at 900 °C. Meanwhile, we found that the addition of molten salt could obtain pure carbon materials, even if the conversation rate of CH4 decreases. The analysis of the carbon products revealed that graphite could be obtained.
        4,000원
        6.
        2024.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Fluorine-doped tin oxide (FTO) has been used as a representative transparent conductive oxide (TCO) in various optoelectronic applications, including light emitting diodes, solar cells, photo-detectors, and electrochromic devices. The FTO plays an important role in providing electron transfer between active layers and external circuits while maintaining high transmittance in the devices. Herein, we report the effects of substrate rotation speed on the electrical and optical properties of FTO films during ultrasonic spray pyrolysis deposition (USPD). The substrate rotation speeds were adjusted to 2, 6, 10, and 14 rpm. As the substrate rotation speed increased from 2 to 14 rpm, the FTO films exhibited different film morphologies, including crystallite size, surface roughness, crystal texture, and film thickness. This FTO film engineering can be attributed to the variable nucleation and growth behaviors of FTO crystallites according to substrate rotation speeds during USPD. Among the FTO films with different substrate rotation speeds, the FTO film fabricated at 6 rpm showed the best optimized TCO characteristics when considering both electrical (sheet resistance of 13.73 Ω/□) and optical (average transmittance of 86.76 % at 400~700 nm) properties with a figure of merit (0.018 Ω-1).
        4,000원
        7.
        2023.11 구독 인증기관·개인회원 무료
        Within the air purification system of a nuclear power plant, specific radioactive isotopes are extracted from gases through adsorption onto activated carbon. To properly dispose of used activated carbon, it is essential to determine the concentration of radioactive nuclides within it. This study discusses the application of the pyrolysis method for analyzing the concentrations of 3H and 14C in spent activated carbon. The pyrolysis was conducted using Raddec’s Pyrolyser, with adjustments made to parameters such as temperature profiles, airflow rates, sample quantities, and trapping solution volumes. The evaluation method for the pyrolysis of activated carbon to analyze 3H and 14C involved adding 3H and 14C sources to the activated carbon before use and subsequently assessing the recovery rates of the added sources in comparison to the analysis results.
        8.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This article reported a simple method for preparing diamond/SiC composites by polymer impregnation and pyrolysis (PIP) process, and the advantages of this method were discussed. Only diamond and SiC were contained in the diamond/SiC composite prepared by PIP process, and the diamond particles remained thermally stable up until the pyrolysis temperature was increased to 1600 °C. The pyrolysis temperature has a significant impact on the thermal conductivity and dielectric properties of composites. The thermal conductivity of the composite reaches a maximum value of 63.9 W/mK when the pyrolysis temperature is 1600 °C, and the minimum values of the real and imaginary part of the complex permittivity are 19.5 and 0.77, respectively. The PIP process is a quick and easy method to prepare diamond/SiC composites without needing expensive equipment, and it is of importance for promoting its application in the field of electric packaging substrate.
        4,000원
        9.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Commercial carbon fiber cloth (CFC) is treated by the Joule-heating pyrolysis method in air to boost its capacitive performance on the premise of energy- and time-saving considerations. A thermoelectric coupling model suitable for the Jouleheating pyrolysis is successfully established based on the comparisons between the simulated temperatures and actually measured ones. The temperature field on CFC surface induced by the Joule heat presents a concentric-ellipse shape that the temperature in the core is the maximal and gradually decays outward. Increasing the direct current (DC) voltage which is applied to the CFC from 1.0 to 6.0 V, the core temperature on the CFC surface can be raised from 31 to 519 °C. The specific surface area and hydrophilicity of the as-prepared porous CFC are greatly improved compared with the pristine one. Electrochemical test shows that the optimal Joule-heating pyrolysis parameters falls at 5.0 V and 12.5 min, and the areal specific capacitance of as-obtained CFC-5.0-12.5 is about 80 folds that of the pristine CFC. In addition to the much shorter preparation time, all the characteristics including areal specific capacitance, rate performance, and electrical conductivity of the Joule-heating pyrolyzed CFC are superior to those of the electrical furnace pyrolyzed counterpart. The aqueous symmetrical supercapacitor made of CFC-5.0-12.5 electrodes exhibits considerable power and energy densities with respect to the previously reported carbon electrode-based supercapacitors. For conductive precursors, the Joule-heating pyrolysis can be an ideal substitute for the traditional electric furnace pyrolysis.
        4,300원
        10.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Lithium lanthanum titanium oxide (LLTO) is a promising ceramic electrolyte because of its high ionic conductivity at room temperature, low electrical conductivity, and outstanding physical properties. Several routes for the synthesis of bulk LLTO are known, in particular, solid-state synthesis and sol-gel method. However, the extremely low ionic conductivity of LLTO at grain boundaries is one of the major problems for practical applications. To diminish the grain boundary effect, the structure of LLTO is tuned to nanoscale morphology with structures of different dimensionalities (0D spheres, and 1D tubes and wires); this strategy has great potential to enhance the ion conduction by intensifying Li diffusion and minimizing the grain boundary resistance. Therefore, in this work, 0D spherical LLTO is synthesized using ultrasonic spray pyrolysis (USP). The USP method primarily yields spherical particles from the droplets generated by ultrasonic waves passed through several heating zones. LLTO is synthesized using USP, and the effects of each precursor and their mechanisms as well as synthesis parameters are analyzed and discussed to optimize the synthesis. The phase structure of the obtained materials is analyzed using X-ray diffraction, and their morphology and particle size are analyzed using field-emission scanning electron microscopy.
        4,000원
        11.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study demonstrates the effect of the compaction pressure on the microstructure and properties of pressureless-sintered W bodies. W powders are synthesized by ultrasonic spray pyrolysis and hydrogen reduction using ammonium metatungstate hydrate as a precursor. Microstructural investigation reveals that a spherical powder in the form of agglomerated nanosized W particles is successfully synthesized. The W powder synthesized by ultrasonic spray pyrolysis exhibits a relative density of approximately 94% regardless of the compaction pressure, whereas the commercial powder exhibits a relative density of 64% under the same sintering conditions. This change in the relative density of the sintered compact can be explained by the difference in the sizes of the raw powder and the densities of the compacted green body. The grain size increases as the compaction pressure increases, and the sintered compact uniaxially pressed to 50 MPa and then isostatically pressed to 300 MPa exhibits a size of 0.71 m. The Vickers hardness of the sintered W exhibits a high value of 4.7 GPa, mainly due to grain refinement.
        4,000원
        12.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        아산화질소(N2O, Nitrous Oxide)는 6대 온실가스 중 하나로 대기 중에서 적외선을 흡수하여 온실효과를 유발하는 것으로 알려져 있다. 특히 지구온난화지수(GWP)는 CO2에 비해 310배 높아 국내뿐만 아니라 전 세계적으로 이슈화되고 있으며, 그에 따른 강력한 환경 규 제 강화법들이 발의되고 있다. N2O 저감 기술에는 물리적인 방식에 따라 농축회수, 촉매분해, 그리고 열분해로 구분할 수 있는데, 본 연구 에서는 그 중 가장 효과적인 열분해 처리방식에 대해 논의하고자 일반적인 연소 조건 내 고온 열분해 방식을 이용하여 비용 저감과 함께 질소산화물을 저감시키는 온도 조건 및 반응 시간에 대한 정보를 제공하고자 한다. 열분해 조건으로 선정된 고온 영역은 1073 K부터 1373 K 까지 100 K 간격을 두고 계산을 수행하였다. 1073 K과 1173 K의 온도조건에 경우, N2O 저감율과 일산화질소 농도가 체류시간에 따라 비례관 계를 이루는 것이 관측되었으며, 1273 K에 경우, 체류시간이 증가함에 따라 발생되는 역반응으로 인해 N2O 저감율이 감소되는 것이 관측되 었다. 특히 1373 K에 경우, 모든 체류시간에 대해 정반응과 역반응이 화학 평형상태에 도달하여 N2O 저감에 대한 반응진행율이 오히려 감 소하는 것으로 확인되었다.
        4,000원
        15.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The discharge of dye-containing industrial effluents such as methylene blue (MB) in water bodies has resulted in severe aquatic and human life problems. In addition to this factor, there is the accumulation of banana peel wastes, which can generate ecological damage. Thus, this research purpose a different method from the literature using the banana peel waste (BP) to produce activated carbon (ACBP) by NaOH activation followed by pyrolysis at 400 °C to remove methylene blue (MB). The material was characterized by TGA, XRD, SEM, BET, and FTIR. The influence of dye concentration (10, 25, 50, 100, 250, and 500 mg L−1) was investigated. ACBP presented a well-developed pore structure with a predominance of mesopores and macropores. This morphological structure directly influences the MB removal capacity. The highest efficiency for dye removal was in the MB initial concentration of 25 mg L−1, sorbent of 0.03 g, and contact time of 60 min, which were 99.8%. The adsorption isotherms were well defined by Langmuir, Freundlich, and Temkin isotherm models. The Langmuir model represented the best fit of experimental data for ACBP with a maximum adsorption capacity of 232.5 mg g−1. This adsorbent showed a comparatively high performance to some previous works. So, the banana peel waste is an efficient resource for producing activated carbon and the adsorption of methylene blue.
        4,600원
        16.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A carbon nanofiber was produced from the Areca catechu husk as a supercapacitor electrode, utilizing a chemical activation of potassium hydroxide (KOH) at different concentrations. One-stage integrated pyrolysis both carbonization and physical activation were employed for directly converting biomass to activated carbon nanofiber. The morphology structure, specific surface area, pore structure characteristic, crystallinity, and surface compound were characterized to evaluate the influence on electrochemical performance. The electrochemical performance of the supercapacitor was measured using cyclic voltammetry (CV) through a symmetrical system in 1 M H2SO4. The results show that the KOH-assisted or absence activation converts activated carbon from aggregate into a unique structure of nanofiber. The optimized carbon nanofiber showed the large specific surface area of 838.64 m2 g−1 with the total pore volume of 0.448 cm3 g−1, for enhancing electrochemical performance. Beneficial form its unique structural advantages, the optimized carbon nanofiber exhibits high electrochemical performance, including a specific capacitance of 181.96 F g−1 and maximum energy density of 25.27 Wh kg−1 for the power density of 91.07 W kg−1. This study examines a facile conventional route for producing carbon nanofiber from biomass Areca catechu husk in economical and efficient for electrode supercapacitor.
        4,300원
        19.
        2021.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, (GaN)1-x(ZnO)x solid solution nanoparticles with a high zinc content are prepared by ultrasonic spray pyrolysis and subsequent nitridation. The structure and morphology of the samples are investigated by X-ray diffraction (XRD), field-emission scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The characterization results show a phase transition from the Zn and Ga-based oxides (ZnO or ZnGa2O4) to a (GaN)1-x (ZnO)x solid solution under an NH3 atmosphere. The effect of the precursor solution concentration and nitridation temperature on the final products are systematically investigated to obtain (GaN)1-x(ZnO)x nanoparticles with a high Zn concentration. It is confirmed that the powder synthesized from the solution in which the ratio of Zn and Ga was set to 0.8:0.2, as the initial precursor composition was composed of about 0.8-mole fraction of Zn, similar to the initially set one, through nitriding treatment at 700oC. Besides, the synthesized nanoparticles exhibited the typical XRD pattern of (GaN)1-x(ZnO)x, and a strong absorption of visible light with a bandgap energy of approximately 2.78 eV, confirming their potential use as a hydrogen production photocatalyst.
        4,000원
        20.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        굴 패각을 입경(0 ~ 1, 1 ~ 2, 2 ~ 5 mm) 및 소성온도(400(P400), 500(P500), 600(P600), 800(P800)℃)별로 전처리 한 후, 퇴적물과 혼합 된 실내실험을 통해 퇴적물의 성상변화를 조사하였다. 굴 패각의 주요 성분인 CaCO3는 700℃ 이상의 소성 온도에서 열분해 되어 CaO로 변화하는 것으로 나타났다. P800의 Ca2+ 농도는 약 790 mg/L로 대조구 및 다른 실험구들에 비해 약 2 ~ 3배 높게 나타나 고온 소성 된 굴 패각일수록 용출되는 Ca2+는 높은 것으로 확인되었다. 600℃ 이상의 온도에서 소성된 굴 패각에서는 CaCO3의 열분해로 형성된 CaO의 가수분해를 통해 간극수 내의 pH가 0.1 ~ 0.5 증가한 것으로 나타났다. 간극수 내의 NH3-N은 대조구보다 약 2.2 ~ 7.6 mg/L의 범위로 증가하였으며, 이는 가수분해 과정에서 발생한 열, Ca2+에 의한 미생물 활동 억제, 소성 과정에서 증가한 굴 패각 공극을 통한 산소 공급 등이 복합적으로 작용한 결과로 판단된다. P600 및 P800의 직상수 및 간극수 내의 PO4-P 농도는 대조구보다 약 0.1 ~ 0.2 mg/L 낮게 나타났으며 이는 소성 굴 패각으로 인한 pH 증가 및 PO4-P와의 화학적 반응으로 판단된다. 이상의 결과를 통해 소성 온도에 따라 굴 패각은 퇴적물 내의 NH3-N 및 PO4-P의 농도변화에 영향을 미치는 것으로 확인되었으나, 입경에 의한 영향은 크지 않은 것으로 확인되었다. 본 연구의 결과는 향후 소성 굴 패각을 낮은 오염도의 연안 저서환경을 개선시키기 위한 기초자료로 활용 될 수 있을 것을 판단된다.
        4,000원
        1 2 3 4 5