This study was performed to investigate the effects of aluminum sulfate administration on the brain tissues of old rats, when given at different concentrations. The experiment attempted to further ascertain whether aluminum exposure cause Alzheimer's disease. Seventy-five aged Sprague-Dawley rats were divided into five groups; a control group, 2 ppm aluminum sulfate group, 20 ppm aluminum sulfate group, 40 ppm aluminum sulfate group, and 200 ppm aluminum sulfate group, and were kept on the respective diets for 12 weeks. In order to understand the influence of aluminum on the brain, serum aluminum concentrations, phospholipid composition, and catecholamine concentrations were compared between the aluminum-treated groups and the normal group. According to the results, serum aluminum was higher in the aluminum sulfate-treated groups than in the normal group. Within the cortex, catecholamine concentrationes were significantly increased but cerebellum and brainstem tissue were significantly decreased, in the aluminum sulfate-treated groups compared to the normal group. For phospholipid composition, phosphatidyl inositol was significantly increased wherase phosphatidyl choline, phosphatidyl ethanolamine, and phosphatidyl serine were significantly decreased in the aluminum sulfate-treated groups versus the normal group. Based on the data, increased aluminum consumption in experimental animals causes increased serum aluminum levels and catecholamine variation. These phenomena are very similar to conditions of Alzherimer's disease. Therfore, the results of this experiment further suggest that aluminum cause Alzherimer's disease, coinciding with reports that aluminum is a cause of neurofibrilly tangles in the brain.
The purpose of this study was to investigate the effects of the task-oriented training according to the application time with the change of motor and cognition function. Focal ischemic brain injury was produced in Sprague-Dawley rats (20 rats, 250±50 g) through middle cerebral artery occlusion (MCAo). Before MCAo induction, all rats were trained in treadmill training and Morris water maze training for 1 week. Then they were randomly divided into groups: Group I : MCAo induction (n1=5), Grop II: the application for simple treadmill task training after. MCAo induction (n2=5). Group III: the application for Morris water maze cognitive task training after MCAo induction (n3=5). Group IV: the application for progressive treadmill task training and Morris water maze cognitive task training after MCAo induction (n4=5). Modified limb placing tests (MLPTs) and motor tests (MTs) were performed to test motor function and then Morris water maze acquisition test (MWMAT) and Morris water maze retention test (MWMRT) were performed to test cognitive function. For MTs, there were significant interactions among the groups with the time (p<.001). Group IV showed the steeper increasing pattern than those in other Groups on the 7th and 14th day. For MLPTs, there were significant interactions among the groups with the time (p<.001). The scores in Group III. IV had showed the more decreasing pattern than those in Group I, II since the 7th day and 14th day. For MWMAT, there were significant interactions among the groups with the time (p<.001). Group II found the Quadrant circular platform showed the steeper decreasing pattern than that in Group I on the 9th, 10th, 11th and 12th day. Group III. IV found the quadrant circular platform showed the slower decreasing pattern than that in Group I, II, For MWMRT, there were significant differences among the four groups (p<.001). The time to dwell on quadrant circular platform in Group IV on the 13th day was the longest compared with other groups. These results suggested that the combined task training was very effective to improve the motor and cognition function for the rats affected on their focal ischemic brain injury.
Environmental Enrichment (EE) alone is not capable of enhancing the fine digit and the forelimb functions. Therefore, we applied modified constraint-induced movement therapy (mCIMT) under the influence of EE to assess its effect on promoting improved forelimb sensorimotor functions. Focal ischemic brain injury was produced in Sprague-Dawley rats (60 rats, 250±50 g) through middle cerebral artery occlusion (MCAO). Before MCAO induction, all rats were trained in modified limb placing tests and reaching tasks for 1 week. Then they were randomly divided into three groups: Group I: application of standard environment (SE) after MCAO induction (n=20), Group II: application of EE after MCAO induction (n=20), Group III: MCAO+EE, mCIMT and task-oriented training that was initiated at 10th day after MCAO induction (n=20). We also applied mCIMT (between 9 AM and 5 PM/daily) which included restraining the forelimb ipsilateral to the lesion using the 'Jones & Schallert' method. We assessed the change of modified limb placing, single pellet reaching test and the immunoreactivity of BDNF by immunohistochemistry (pre, 1st, 5th, 10th and 20th day). Group I showed no improved outcome, whereas group II and III significantly improved on the use of the forelimb and the immunoreactivity. The qualitative analysis of the skilled reaching test, of group III showed the greatest improvement in the fine digit and the forelimb function. These results suggest that EE combined with mCIMT is more functional in promoting enhanced fine digit and forelimb functional movements.
폐경기 여성은 동령 남성보다 퇴행적 뇌질환의 빈도가 유의적으로 높으며 이를 예방개선하기 위한 목적으로 에스트로젠 대체요법이 시행되고 있으나 유방암과 자궁암 유발 위험성이 제시되고 있어 콩류 등에 다량 함유되어 있는 phytoestrogen류인 isoflavone을 이용한 대체요법 개발이 활발하다. 밀착결합에 의해 제공되는 혈액-뇌확산장벽은 뇌의 항상성 조절에 중요한 역할이 있으며 다양한 뇌질환에서 변형이 일어난다. 본 연구는 난소절제 백서 모델에서 폐경
Stroke occurs when local thrombosis, embolic particle or the rupture of blood vessele interrupts the blood floe to the brain. -estradiol 17-valerate has been reported to exert neuroprotective effects when administered before an ischemic insult. Recently, the pathophysiology of cerebral ischemia has been studied extensively in rat with various methods. In the present study, we investigates whether -estrodiol 17-valerate can protect against brain injury. RNA sample were extracted from the hippocampus of female rat, reverse-transcription in the presence of [32p] dATP. Differential gene express-ion profiles were revealed (Bone morphogenetic protein type 1A receptor, Protein disulphide isomerase, Leukemia inhibitor factor receptor, cytochrome bc- 1 complex-x core P, thiol-specific antioxidant protein). RT-PCR was used to validate the relative expression pattern obtained by the cDNA array. The precise relationship between the early expression of recovery genes and stroke is a matter of luther investigation. This Study was supported by the Korea Science and Engineering Foundation(KOSEF) through the Biohealth Products Research Center(BPRC), Inje University, Korea.
Synaptosome에 의한 [3H]-serotonin의 일반적인 흡수특성과 이 과정에 납이 미치는 영향을 in vitro와 in vitro에서 관찰하였다. 흰쥐의 대뇌와 뇌간에서 각각 분리한 synaptosome의 흡수친화력은 대뇌가 Km=0.5μM, 뇌간이 Km=0.1μM로 모두 고친화성 흡수였고 뇌간에서 더 높았다. 또한 이 흡수과정에 sodium과 potassium이온이 영향을 미치는 것으로 나타났다. Synaptosome이
Eight natural or semisynthesized monoterpenes were examined for their effects on rat brain monoamine oxidase(MAO) using benzylamine as substrate. Thujone and 3-carene were found to have the inhibition effects on rat brain MAO activity; 38% and 95% inhibition at 10^(-3) M respectively. The kinetic study on 3-carene, the most potent inhibitor tested in this study, showed that its MAO inhibition effect was confirmed as uncompetetive type. But (+) pulegon and (-) isopulegon was found to activate MAO slightly.
A recent report demonstrated that in human aging brain after menopause/andropause luteinizing hormone (LH) is localized in the cytoplasm of pyramidal neurons of hippocampus and a significant increase of LH is also detected in the cytoplasm of pyramidal neurons and neurofibrillary tangles of Alzheimer's disease brain compared to age-matched control brain. It was suggested that the decreased steroid hormone production and the resulting LH expression in the neurons vulnerable to Alzheimer's disease pathology may have some relevance to the development of Alzheimer's disease. It is, however, unclear whether the presence of LH in neurons of human aging and Alzheimer's disease brain is due to intracellular LH expression or to LH uptake from extracellular sources, since gonadotropins are known to cross the blood brain barrier. Moreover, there is no report by using the brain of experimental animal that LH is expressed in such neurons as found in the human brain. In the present study, we found that LH immunoreactivity is localized in the pyramidal neurons of cerebral cortex and hippocampus of 12 and 18 months old rats but can not detect any immunoreactivity for LH in the young adult (3-5 months old) rats. To confirm that these LH immunoreactivity results from de novo synthesis in the brain but not the uptake from extracellular space, we performed RT-PCR and found that mRNA for LH is detected in several regions of brain including cerebral cortex and hippocampus. These findings suggest us that LH expression in old rat brain may play an important role in aging process of rat brain.