최근 늘어나고 있는 이상 기상 현상으로 산사태 위험이 점차 증가하고 있다. 산사태는 막대한 인명 피해와 재산 피해를 초래할 수 있기에 이러한 위험을 사전에 평가함은 매우 중요하다. 최근 기술 발전으로 인해 능동형 원격탐사 방법을 사용하여 더 정확하고 상세한 지표 변위 및 강수 데이터를 얻을 수 있게 되었다. 그러나 이러한 데이터를 활용하여 산사태 예측 모델을 개발하는 연구는 찾기 힘들다. 따라서 본 연구에서는 합성개구레이더 간섭법(InSAR)을 사용한 지표 변위 자료와 하이브리드 고도면 강우(HSR) 추정 기법을 통한 강수 정보를 활용하여 산사태 민감도를 예측하는 기계학습 모델을 제시하고 있다. 나아가 기계학습의 블랙박스 문제를 극복할 수 있는 해석가능한 기계학습 방법인 SHAP을 이용하여 산사태 민감도의 영향 변수에 대한 중요도를 체계적으로 평가하였다. 경상북도 울진군을 대상으로 사례 연구를 수행한 결과, XGBoost가 가장 좋은 예측 성능을 보이며, 도로로부터의 거리, 지표 고도, 일 최대 강우 강도, 48시간 선행 누적 강우량, 사면 경사, 지형습윤지수, 단층으로 부터의 거리, 경사도, 지표 변위, 하천으로부터의 거리가 산사태 예측에 영향을 미치는 주요 변수로 밝혀졌다. 특히, 능동형 원격탐사를 통해 얻은 자료인 강우 강도와 지표 변위의 절댓값이 높을수록 산사태 발생 확률이 높음을 확인하였다. 본 연구는 능동형 원격탐사 자료의 산사태 민감도 연구에서의 활용 가능성을 실증적으로 보여주고 있으며, 해당 자료를 바탕으로 시공간적 으로 변하는 산사태 민감도를 도출함으로써 향후 산사태 민감도 모니터링에 효과적으로 활용될 수 있을 것으로 기대된다.
최근 해상 교통량 증가 및 연안 중심의 레저활동으로 인해 다양한 해양사고가 발생하고 있다. 그 중 선박사고는 인 명 및 재산 피해를 유발할 뿐만 아니라 기름 및 위험·유해물질 유출을 동반한 해양 오염사고로 이어질 가능성이 크다. 따 라서 해양사고 대비 및 대응을 위한 지속적인 선박 모니터링이 필요하다. 본 연구에서는 해상 선박 모니터링 체계 구축을 위한 초분광 원격탐사 기반의 항공 실험 수행 및 선박탐지 결과를 제시하였다. 한반도 서해 궁평항 인근 해역을 대상으로 초분광 항공관측을 수행하였으며, 사전에 다양한 선박 갑판에 대한 분광 라이브러리를 구축하였다. 탐지 방법으로는 spectral correlation similarity (SCS) 기법을 사용하였으며 초분광 영상과 선박 스펙트럼 사이의 공간 유사도 분포를 분석하 였다. 그 결과 초분광 영상에 존재하는 총 15개의 선박을 탐지하였으며 최대 유사도에 기반한 선박 갑판의 색상도 분류하 였다. 탐지 선박들은 고해상도 digital mapping camera (DMC) 영상과의 매칭을 통해 검증하였다. 본 연구는 해상 선박탐지 를 위한 항공 초분광 센서 활용의 기초로서 향후 원격탐사 기반의 선박 모니터링 시스템에 주요 역할을 할 것으로 기대된 다.
Climate change has made outbreaks of insect-transmitted plant viruses increasingly unpredictable. Understanding spatio-temporal dynamics of insect vector migration can help forecast virus outbreaks, but the relationship is often poorly characterized. The incidence of Beet curly top virus (BCTV) was examined in 2,196 tomato fields in California from 2013-2022. In addition, we experimentally showed dispersal of the beet leafhopper, the only known vector of BCTV is negatively correlated with plant greenness, and we estimated spring migration timing using a vegetation greenness-based model. Potential environmental factors and spring migration time of beet leafhoppers were associated with BCTV incidence. We found BCTV incidence is strongly associated with spring migration timing rather than environmental factors themselves. In addition, the vegetation greenness-based model was able to accurately predict the severe BCTV outbreaks in 2013 and 2021 in California. The predictive model for spring migration time was implemented into a web-based mapping system, serving as a decision support tool for management purposes.
The Sun-Earth Lagrange point L4, which is called a parking space of space, is considered one of the unique places where solar activity and the heliospheric environment can be observed continuously and comprehensively. The L4 mission affords a clear and wide-angle view of the Sun-Earth line for the study of Sun-Earth connections from remote-sensing observations. The L4 mission will significantly contribute to advancing heliophysics science, improving space weather forecasting capability, extending space weather studies far beyond near-Earth space, and reducing risk from solar radiation hazards on human missions to the Moon and Mars. Our paper outlines the importance of L4 observations by using remote-sensing instruments and advocates comprehensive and coordinated observations of the heliosphere at multi-points including other planned L1 and L5 missions. We mainly discuss scientific perspectives on three topics in view of remote sensing observations: (1) solar magnetic field structure and evolution, (2) source regions of geoeffective solar energetic particles (SEPs), and (3) stereoscopic views of solar corona and coronal mass ejections (CMEs).
Forest destruction is an inevitable result of the development processes. According to the environmental impact assessment, over 10% of the destroyed trees need to be recycled and transplanted to minimize the impact of forest destruction. However, the rate of successful transplantation is low, leading to a high rate of tree death. This is attributable to a lack of consideration for environmental factors when choosing a temporary site for transplantation and inadequate management. To monitor transplanted trees, a field survey is essential; however, the spatio-temporal aspect is limited. This study evaluated the applicability of remote sensing for the effective monitoring of transplanted trees. Vegetation indices based on satellite remote sensing were derived to detect time-series changes in the status of the transplanted trees at three temporary transplantation sites. The mortality rate and vitality of transplanted trees before and after the transplant have a similar tendency to the changes in the vegetation indicators. The findings of this study showed that vegetation indices increased after transplantation of trees and decreased as the death rate increased and vitality decreased over time. This study presents a method for assessing newly transplanted trees using satellite images. The approach of utilizing satellite photos and the vegetation index is expected to detect changes in trees that have been transplanted across the country and help to manage tree transplantation for the environmental impact assessment.
국내외 해상 위험·유해물질(HNS, Hazardous and Noxious Substances) 물동량 증가와 함께 HNS 유출 사고가 빈번히 발생하고 있다. HNS는 전 세계적으로 약 6,000여 종으로 대부분 유독한 성질을 가지므로 이러한 유출 사고 발생은 해양 생태계 파괴를 비롯하여 폭발 및 화재 등으로 인한 인명 및 재산피해를 유발한다. 따라서 해상 HNS 유출 사고를 대비하여 파장에 따른 HNS 분광 라이브러리 구축 및 탐지 알고리즘을 개발해야 한다. 본 연구에서는 프랑스 현지에서 지상 HNS 유출 실험을 진행하였다. 초분광센서 관측을 통해 파장에 따른 톨루엔 라이브러리 스펙트럼을 구축하였으며, 분광혼합 알고리즘을 활용하여 초분광 HNS를 탐지하였다. 전처리 과정으로 주성분 분석을 적용하여 노이즈 제거 및 차원 압축을 수행하였으며, N-FINDR 기법을 통해 영상을 대표하는 톨루엔과 해수의 엔드멤버 스펙트럼을 추출하였다. 스펙트럼 기반의 톨루엔 및 해수의 점유비율을 계산함으로써 모든 픽셀의 HNS 탐지 정확도를 확률로 제시하였다. 최대 탐지 정확도를 가지는 점유비율 선정을 위해 418.15 nm 파장의 복사도 영상과 비교하였으며, 그 결과 약 42%의 비율에 서 99% 이상의 정확도를 나타내었다. 해상 HNS 유출은 높은 위험성으로 인해 사람이 쉽게 접근할 수 없는 한계를 지닌다. 본 HNS 실험과정 및 탐지 결과는 초분광 원격탐사에 기반한 HNS 오염 해역 추정에 도움이 될 것이다.
2015년부터 최근까지 차세대도시농림융합기상사업단에서는 수도권에 위치한 도시기상 관측소에서 관측된 기상 자료(14소), 운고계(2소) 그리고 마이크로웨이브 라디오미터(MWR, 7소) 자료를 이용하여 태양에너지를 산출하였다. 수 도권지역에 위치한 운고계에서 관측된 후방산란계수와 MWR에서 추정된 액상물량을 이용하여 구름광학두께와 운량을 산출하였다. 각각의 원격탐사장비에서 산출된 운량을 태양복사모델에 입력하여 지표면에 도달하는 태양에너지를 계산하였다. 추정된 태양에너지를 관측과 비교한 결과, 중랑과 광화문지점에서는 과소추정이 나타났다. 선형회귀분석한 결과 0.8이하의 기울기를 나타냈고 −20W/m 2의 음의 편차와 120 W/m 2의 평방근오차(RMSE)가 나타났다. 그리고 MWR을 이용하여 추정된 태양에너지의 정확도(평균 결정계수(R 2 )=0.8)와 오차율(평균 RMSE=110 W/m 2 )이 향상되었다. 월별 산출된 운량과 태양에너지는 운고계를 이용하여 산출하였을 때 운량이 0.09 이상 크게 나타났으며 태양에너지가 50W/m 2 이상 낮게 산출되었다. 지점에 따라 차이는 있었으나 대체로 7월과 9월의 RMSE가 50W/m 2 이상 크게 계산되었다. 결과적으로 일누적 태양에너지는 광화문지점에서 가장 높은 상관성이 나타났고(R 2 =0.80, RMSE=2.87 MJ/Day), 구로지점에서 상관성이 가장 낮았다(R 2 =0.63, RMSE=4.77 MJ/Day).
한반도 주변 해상사고가 증가함에 따라 원격탐사 자료를 활용한 선박탐지 연구의 중요성이 점점 더 강조되고 있다. 이 연구는 고해상도 광학영상에 의존하는 기존 선박탐지 분야에 수백 개 채널의 분광정보를 포함하는 초분광영상을 활용하여 새로운 선박탐지 알고리즘 제시하였다. 두 차례의 현장관측을 통해 측정한 선박 선체의 반사 스펙트럼과 AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) 초분광센서 영상의 선박 및 해수 반사 스펙트럼 간의 분광정합 기법을 적용하였다. 총 다섯 개의 탐지 알고리즘 spectral distance similarity (SDS), spectral correlation similarity (SCS), spectral similarity value (SSV), spectral angle mapper (SAM), spectral information divergence (SID)를 사용하였다. SDS는 선박 일부가 해수로 탐지되는 오차를 나타내었고, SAM은 선박과 해수 사이에 약 1.8배의 차이를 나타내어 명확한 분류 결과를 보여주었다. 이와 더불어 본 연구에서는 각 기법의 최적 임계값을 제시하여 초분광 영상에 포함되어 있는 선박을 분류하였으며 그 결과 SAM, SID가 다른 탐지 알고리즘에 비해 우수한 선박탐지 능력을 보여주었다.
It is necessary to monitor growth status of the crops due to continuous change of climate causing insecurity in crop cultivation. Low altitude remote sensing(LARS) system is utilized to accurately monitor the growth status of the crops. In this study, models for monitoring fresh weight(FW), one of the major growth factors of Chinese cabbage, were developed with structural indices and simple ratio calculated from bands in remotely sensed canopies by NIR, RE(imaging sensor A) and multispec-4c sensors(imaging sensor B) equipped with fixed-wing UAV depending on vegetation stages of normal planting(NP) and delayed planting(DP) Chinese cabbages. In results of imaging sensor A, the estimation models using structural indices and simple ratio were divided into NP and DP due to different attribute of reflectance in canopies with changed environment condition depending on different planting dates. The estimation models using simple ratio calculated by red edge and visible bands of NP showed better performance than other models, but RMSE was high. The models using simple ratio calculated by same bands of DP were feasible to accurately estimate FW(R2 of more than 0.946 with RMSE of less than 169.5 g). In results of imaging sensor B, the estimation models using structural indices and simple ratio on DP were divided into low to intermediate FW and intermediate to high FW. As a result, estimation models of all structural indices and simple ratio in low to intermediate FW bands were advisable to estimate FW(R2 of more than 0.860 with RMSE of less than 104.7 g). Estimation models of those calculated by red edge and visible bands in intermediate to high FW were only possible to accurately estimate FW(R2 of more than 0.532 with RMSE of less than 400.7 g).
최근 도시 내 급격한 기상 변화로 인한 자연재해가 심각한 사회적 문제로 대두되고 있다. 도시의 자연 환경 변화에 대한 효과적인 예측과 대처를 위해서는 신뢰성 있는 기상 자료의 확보가 매우 중요하다. 이러한 맥락에서 본 연구는 도시의 기상 환경 중 기온에 초점을 맞춰, 보다 정확한 기온 추정을 위한 대안적 방법을 제시하였다. 특히, 시공간 해상도와 정확성을 높이기 위해 원격탐사 자료와 지형 기반 공간 보간법을 결합한 기온 추정 방법을 제시하였으며, 기존의 여러 추정 방법들과 비교·평가함으로써 제시된 추정법의 적용가능성을 검토하였다. 분석 결과, 각 추정 기법을 통한 기온 결과는 기온 추정값의 범위에 있어서는 유사한 결과를 보였지만 기온의 공간적 분포 특성은 매우 상이하게 나타났다. 특히, 원격탐사 자료를 활용하여 추정된 기온 분포는 토지피복 유형에 따른 차이를 잘 보여주며, 본 연구에서 제시한 추정 기법의 결과는 고도에 따른 기온차를 보다 뚜렷하게 보여줬다. 추정의 정확도에 있어서는 원격탐사 자료와 지형 기반 공간 보간법을 결합한 기온 추정 기법이 높은 정확도를 보여줬다. 종합적으로 본 연구에서 제시한 기온 추정 기법은 토지피복 유형과 고도에 따른 기온 변화를 잘 나타내는 동시에 원격탐사 자료를 활용한 기존의 기온 추정 기법들에 비해 정확도가 높아 기온 분포도와 같이 연속적 공간의 기온값을 정확하게 표현하는 데 유용하게 활용될 수 있을 것으로 기대된다.