Due to the complexity of urban area, the city vehicle routing problem has been a difficult problem. The problem has involved factors such as parking availability, road conditions, and traffic congestion, all of which increase transportation costs and delivery times. To resolve this problem, one effective solution can be the use of parcel lockers located near customer sites, where products are stored for customers to pick up. When a vehicle delivers products to a designated parcel locker, customers in the vicinity must pick up their products from that locker. Recently, identifying optimal locations for these parcel lockers has become an important research issue. This paper addresses the parcel locker location problem within the context of urban traffic congestion. By considering dynamic environmental factors, we propose a Markov decision process model to tackle the city vehicle routing problem. To ensure more real situations, we have used optimal paths for distances between two nodes. Numerical results demonstrate the viability of our model and solution strategy.
As technologies have been more quickly developed in this 4th Industry Revolution era, their application to defense industry has been also growing. With these much advanced technologies, we attempt to use Manned-Unmanned Teaming systems in various military operations. In this study, we consider the Location-Routing Problem for reconnaissance surveillance missions of the maritime manned-unmanned surface vehicles. As a solution technique, the two-phase method is presented. In the first location phase, the p-median problem is solved to determine which nodes are used as the seeds for the manned vehicles using Lagrangian relaxation with the subgradient method. In the second routing phase, using the results obtained from the location phase, the Vehicle Routing Problems are solved to determine the search routes of the unmanned vehicles by applying the Location Based Heuristic. For three network data sets, computational experiments are conducted to show the performance of the proposed two-phase method.
도서관은 문화 공간으로서 누구나 이용할 수 있고 다양한 분야의 지식과 정보를 제공하여 삶의 질을 높이는 중요한 사회기반 시설 중 하나이다. 현재 한국의 도서관 수는 수요에 비해 공급이 부족한 상황이며, 이를 해결하기 위해 일부 지자체는 차량을 수단으로 이동형 도서 서비스를 제공하는 분관 형태의 이동 도서관을 운영하고 있다. 주로 도서관을 이용하기 어려운 사람들을 대상으로 순회하며 도서관 서비스를 제공하지만, 비효율적인 운행 노선과 균일하지 않은 서비스로 실질적인 효과를 발휘하지 못하고 있다. 따라서 본 연구에서는 성남시 새마을 이동 도서관을 대상으로 순회 경로 현황을 파악하고, 최소 이동 거리로 개선된 이동 도서관 노선을 제시하고자 한다. 더욱 효율적인 운영을 위해 서비스 권역을 나누고, 시간 제약을 결합한 차량경로설정 문제를 사용하여 도서 서비스의 이용 격차를 줄인 새로운 운행 노선을 구축하였다. 본 연구는 이동 도서관의 효과적인 노선 운영에 대한 기초적인 자료로 활용될 수 있다는 점에서 의의가 있다. 향후 이동 도서관 뿐만 아니라 이동형 공공 서비스를 위한 유용하고 현실적인 가이드라인으로 활용될 수 있을 것이다.
Due to the issue of the sustainability in transportation area, the number of electric vehicles has significantly increased. Most automakers have decided or planned to manufacture the electric vehicles rather than carbon fueled vehicles. However, there are still some problems to figure out for the electric vehicles such as long charging time, driving ranges, supply of charging stations. Since the speed of growing the number of electric vehicles is faster than that of the number of charging stations, there are lack of supplies of charging stations for electric vehicles and imbalances of the location of the charging stations. Thus, the location problem of charging stations is one of important issues for the electric vehicles. Studies have conducted to find the optimal locations for the charging stations. Most studies have formulated the problem with deterministic or hierarchical models. In this paper, we have investigated the fluctuations of locations and the capacity of charging stations. We proposed a mathematical model for the location problem of charging stations with the vehicle routing problem. Numerical examples provide the strategy for the location routing problems of the electric vehicles.
Transportation in urban area has been getting hard to fulfill the demand on time. There are various uncertainties and obstacles related with road conditions, traffic congestions, and accidents to interrupt the on-time deliveries. With this situation, the last mile logistics has been a keen issue for researchers and practitioners to find the best strategy of the problem. A way to resolve the problem is to use parcel lockers. Parcel locker is a storage that customers can pick up their products. Transportation vehicles deliver the products to parcel lockers instead of all customer sites. Using the parcel lockers, the total delivery costs can be reduced. However, the inconvenience of customer has to increase. Thus, we have to optimal solution to balance between the total delivery costs and customers' inconvenience. This paper formulates a mathematical model to find the optimal solution for the vehicle routing problem and the location problem of parcel lockers. Experimental results provide the viability to find optimal strategy for the routing problem as well as the location problem.
The Dynamic Vehicle Routing Problem (DVRP) involves a combinatorial optimization problem where new customer demands become known over time, and old routes must be reconfigured to generate new routes while executing the current solution. We consider the high level of dynamism problem. An application of highly dynamic DVRP is the ambulance service where a patient contacts the service center, followed by an evaluation of case severity, and a visit by a practitioner/ ambulance is scheduled accordingly. This paper considers a variant of the DVRP and proposes a decentralized algorithm in which collaborators (Depot and Vehicle), both have only partial information about the entire system. The DVRP is modeled as a periodic re optimization of VRP using the proposed decentralized algorithm where collaborators exchange local information to achieve the best global objective for the current state of the system. We assume the existence of a dispatcher e.g., headquarter of the company who can communicate to vehicles in order to gather information and assigns the new visits to them. The effectiveness of the proposed decentralized coordination algorithm is further evaluated using benchmark data given in literature. The results show that the proposed method performed better than the compared algorithms which utilize the centralized coordination in 12 out of 21 benchmark problems.
After Dantzig and Rasmer introduced Vehicle Routing Problem in 1959, this field has been studied with numerous approaches so far. Classical Vehicle Routing Problem can be described as a problem of multiple number of homogeneous vehicles sharing a same starting node and having their own routes to meet the needs of demand nodes. After satisfying all the needs, they go back to the starting node. In order to apply the real world problem, this problem had been developed with additional constraints and pick up & delivery model is one of them. To enhance the effectiveness of pick up & delivery, hub became a popular concept, which often helps reducing the overall cost and improving the quality of service. Lots of studies have suggested heuristic methods to realize this problem because it often becomes a NP-hard problem. However, because of this characteristic, there are not many studies solving this problem optimally. If the problem can be solved in polynomial time, optimal solution is the best option. Therefore, this study proposes a new mathematical model to solve this problem optimally, verified by a real world problem. The main improvements of this study compared to real world case are firstly, make drivers visit every nodes once except hub, secondly, make drivers visit every nodes at the right time, and thirdly, make drivers start and end their journey at their own homes.
The vehicle routing problem is one of the vibrant research problems for half a century. Many studies have extensively studied the vehicle routing problem in order to deal with practical decision-making issues in logistics. However, developments of new logistics strategies have inevitably required investigations on solution methods for solving the problem because of computational complexity and inherent constraints in the problem. For this reason, this paper suggests a simulated annealing (SA) algorithm for a variant of vehicle routing problem introduced by a previous study. The vehicle routing problem is a multi-depot and multi-trip vehicle routing problem with multiple heterogeneous vehicles restricted by the maximum permitted weight and the number of compartments. The SA algorithm generates an initial solution through a greedy-type algorithm and improves it using an enhanced SA procedure with three local search methods. A series of computational experiments are performed to evaluate the performance of the heuristic and several managerial findings are further discussed through scenario analyses. Experiment results show that the proposed SA algorithm can obtain good solutions within a reasonable computation time and scenario analyses show that a transportation system visiting non-dedicated factories shows better performance in truck management in terms of the numbers of vehicles used and trips for serving customer orders than another system visiting only dedicated factories.
The growing logistics strategy of a company is to optimize their vehicle route scheduling in their supply chain system. It is very important to analyze for continuous pickups and delivery vehicle scheduling. This paper is a computational study to investigate the effectiveness of continuous pickups and delivery vehicle routing problems. These scheduling problems have 3 subproblems; Inbound Vehicle Routing Problem with Makespan and Pickup, Line-haul Network Problem, and Outbound Vehicle Routing Problem with Delivery. In this paper, we propose 5 heuristic Algorithms; Selecting Routing Node, Routing Scheduling, Determining Vehicle Type with Number and Quantity, and Modification Selecting Routing Node. We apply these Algorithms to S vehicle company. The results of computational experiments demonstrate that proposed methods perform well and have better solutions than other methods considering the basic time and due-date.
A possible heuristic to solve metropolitan area vehicle routing problems with variable vehicle speeds is suggested in this research. Delivery hours are classified into 4 different time zones to make variable vehicle speeds no change within the same time zone to make TDVRP simple to solve. The suggested heuristic consists of 2 stages such as initial solution development step and initial solution improvement step. A computer program using C++ is constructed to evaluate the suggested heuristic. Randomly generated vehicle routing problems are used for the experiments. This heuristic could be helpful to logistics companies by increasing delivery efficiencies since the 4 zone classification is taken from the observed traffic information offered by a local government.
The inventory routing problem (IRP) is an important area of Supply Chain Management. The objective function of IRP is the sum of transportation cost and inventory cost. We propose an Artificial Immune System(AIS) to solve the IRP. AIS is one of natural computing algorithm. An hyper mutation and an vaccine operator are introduced in our research. Computation results show that the hyper mutation is useful to improve the solution quality and the vaccine is useful to reduce the calculation time.
The vehicle routing problem determines each vehicle routes to find the transportation costs, subject to meeting the customer demands of all delivery points in geography. Vehicle routing problem is known to be NP-hard, and it needs a lot of computing time to get the optimal solution, so that heuristics are more frequently developed than optimal algorithms. This study aims to develop a heuristic method which combines guided local search with a tabu search in order to minimize the transportation costs for the vehicle routing assignment and uses ILOG programming library to solve. The computational tests were performed using the benchmark problems. And computational experiments on these instances show that the proposed heuristic yields better results than the simple tabu search does.
Vehicle routing problem with time windows is determined each vehicle route in order to minimize the transportation costs. All delivery points in geography have various time restriction in camparision with the basic vehicle routing problem. Vechicle rout
Vehicle routing problem with Time Windows is determined each vehicle route in order to minimize the transportation costs. All delivery points in geography have various time restriction in camparision with the basic Vehicle routing problem. Vechicle routing problem with Time Windows is known to be NP-Hard, and it needs a lot of computing time to get the optimal solution, so that heuristics are more frequently developed than optimal algorithms. This study aims to develop a heuristic method which combines guided local search with a Tabu Search in order to minimize the transportation costs for the vehicle routing assignment and uses ILOG programming library to solve. The computational tests were performed using the benchmark problems.
This paper dealt with a kind of heterogeneous vehicle routing problem with known demand and time deadline of customers. The customers are supposed to have one of tight deadline and loose deadline. The demand of customers with tight deadline must be fulfil
본 논문에서는 우편사업의 효율적 운영을 위해 추진중인 우편집중국의 건설과 관련하여 기존에 발표된 우편집중국의 건설에 관한 연구보고서 등을 통해서 우편집중국의 운영에 관한 연구 둥을 분석한다. 또한, 우편집중국간의 우편수송경로결정 의사결정지원 시스템을 개발하기 위해 우편물 수송모델을 수송수단에 따른 복수계층 네트워크(Multi layer network)로 구성하여, 이를 다품목네트워크 흐름문제로 수송모델을 정의하고, 정수선형계획문제로 정식화하여 최적화 S/W LINGO를 이용하여 구한 해의 결과를 분석하여 향후 우편수송경로결정을 위한 의사결정지원시스템의 기본으로 활용하고자 한다.
일반적으로 컨테이너 공로 운송은 근거리 운송, 장거리 운송, 셔틀 운송으로 구분되고, 컨테이너 차량은 섀시 형태에 따라 20' 컨테이너 전용, 40' 컨테이너 전용, 콤바인 섀시 차량으로 나눌 수 있다. 셔틀 서비스는 O/D pairs가 같은 물량이 여러 개 발생할 수 있으며, 콤바인 섀시 트레일러는 20ft 컨테이너 2개를 싣거나 한 개의 40ft 컨테이너를 실을 수 있다. 본 논문에서는 셔틀 서비스를 고려한 컨테이너 차량 경로 문제를 다루고자 한다. 문제 정의는 기존의 연구된 신재영, 오성인(2008)의 문제와 유사하지만 셔틀 서비스의 특징을 고려해야 한다. 이에 각 노드를 한 번 이상 방문할 수 있는 pick-up and delivery 제약을 가진 차량경로문제를 근간으로 하여 콤바인 섀시 트레일러를 이용한 컨테이너 셔틀 운송계획 문제를 정의하고, 적합하고 효율적인 해법을 제안하고자 한다.
The field of vehicle routing is currently growing rapidly because of many actual applications in truckload and less than truckload trucking, courier services, door to door services, and many other problems that generally hinder the optimization of transportation costs in a logistics network. The rapidly increasing number of customers in such a network has caused problems such as difficulty in cost optimization in terms of getting a global optimum solution in an acceptable time. Fast algorithms are needed to find sufficient solutions in a limited time that can be used for real time scheduling. In this paper, the nearest L-method (NLNM) is proposed to obtain a vehicle routing solution. String neighbors of different lengths were chosen, tested and compared. The applied de crossing procedure is meant to solve the routes by NLNM by giving a better solution and shorter computation time than that of NLNM with long string neighbors.