The directed energy deposition (DED) process of metal 3D printing technologies has been treated as an effective method for welding, repairing, and even 3-dimensional building of machinery parts. In this study, stainless steel 316L (STS316L) and Inconel 625 (IN625) alloy powders are additively manufactured using the DED process, and the microstructure of the fabricated STS316L/IN625 sample is investigated. In particular, there are no secondary phases in the interface between STS316L and the IN625 alloy. The EDS and Vickers hardness results clearly show compositionally and mechanically transient layers a few tens of micrometers in thickness. Interestingly, several cracks are only observed in the STS 316L rather than in the IN625 alloy near the interface. In addition, small-sized voids 200– 400 nm in diameter that look like trapped pores are present in both materials. The cracks present near the interface are formed by tensile stress in STS316L caused by the difference in the CTE (coefficient of thermal expansion) between the two materials during the DED process. These results can provide fundamental information for the fabrication of machinery parts that require joining of two materials, such as valves.
A cold-work tool steel powder is used to fabricate 3-dimensional objects by selective laser melting using a high-pressure gas atomization process. The spherical powder particles form continuous carbide networks among the austenite matrix and its decomposition products. The carbides comprise Nb-rich MC and Mo-rich M2C. In the SLM process, the process parameters such as the laser power (90 W), layer thickness (25 μm), and hatch spacing (80 μm) are kept fixed, while the scan speed is changed from 50 mm/s to 4000 mm/s. At a low scan speed of 50 mm/s, spherical cavities develop due to over melting, while they are substantially reduced on increasing the speed to 2000 mm/s. The carbide network spacing decreases with increasing speed. At an excessively high speed of 4000 mm/s, long and irregularly shaped cavities are developed due to incomplete melting. The influence of the scan pattern is examined, for which 1 × 1 mm2 blocks constituting a processing layer are irradiated in a random sequence. This island-type pattern exhibits the same effect as that of a low scan speed. Post processing of an object using hot isostatic pressing leads to a great reduction in the porosity but causes coarsening of the microstructure.
The 304 stainless steel powders were prepared by high energy ball milling and subsequently sintered byspark plasma sintering, and the microstructural characteristics and micro-hardness were investigated. The initial size ofthe irregular shaped 304 stainless steel powders was approximately 42 µm. After high energy ball milling at 800 rpmfor 5h, the powders became spherical with a size of approximately 2 µm, and without formation of reaction compounds.From TEM analysis, it was confirmed that the as-milled powders consisted of the aggregates of the nano-sized particles.As the sintering temperature increased from 1073K to 1573K, the relative density and micro-hardness of sintered sampleincreased. The sample sintered at 1573K showed the highest relative density of approximately 95% and a micro-hard-ness of 550 Hv.
Characteristics of Al-based composites with waste stainless steel short fiber, fabricated by magnetic pulsed compaction and sintering were investigated. The compacts prepared by magnetic pulsed compaction showed high relative density and homogeneous microstructure compared with that by conventional press compaction. The relative density of sintered composites at for 1 h exhibited the same value with compacts and decreased with increase in STS short fiber content. The reaction between Al and STS phase was confirmed by the microstructural analysis using EDS. The sintered composites, prepared by magnetic pulsed compaction, showed increased hardness value with increasing STS fiber content. Maximum yield strength of 100 MPa and tensile strength of 232 MPa were registered in the AI-based composite with 30 vol% STS short fiber.
It is known that powder characteristics including particle size and distribution, particle shape, and chemical composition are important parameters which influence direct laser sintering of metal powders. In this paper, we introduce a first order kinetics model for densification of steel powders during laser sintering. A densification coefficient (K) is defined which express the potential of different powders to be laser-sintered to a high density dependent on their particle characteristics.
Advanced melting technology is now being employed in the manufacture of stainless steel powders. The new process currently includes electric arc furnace (EAF) technology in concert with Argon Oxygen Decarburization (AOD), High Performance Atomizing (HPA) and hydrogen annealing. The new high performance-processing route has allowed the more consistent production of existing products, and has allowed enhanced properties, such as improved green strength and green density. This paper will review these processing changes along with the potential new products that are being developed utilizing this technology. These include high strength stainless steels such as duplex and dual phase as well as stainless steel powders used in high temperature applications such as diesel filters and fuel cells.
An investigation was performed to apply the M3/2 grade high speed steel for metal injection molding using both prealloyed and elementally blended powders. The injected samples were subjected to a debinding step in gas atmosphere at a ratio that affected the carbon content of the material. The carbon content ranged from 1.4wt.% to 1.43wt%. with increasing content up to 80% in atmosphere for the prealloyed powders. The carbon contents of the elementally blended powders exhibited 1.44wt.% and 1.62wt.% at 10% and 20% gas, respectively. This level decreased to 0.17wt.% upon increasing the content. The sintered density of both powders increased rapidly as the temperature reached the liquid phase forming temperature. After forming the liquid phase, the density rapidly increased to the optimum sintering temperature for the prealloyed powders, whereas the density of mixed elemental powders goes up slowly to the optimum sintering temperature. The optimum sintering temperature and density are 126 and 97.3% for the prealloyed powders and 128 and 96.9% for the elementally blended powders, respectively. The microstructure of the specimen at the optimum sintering temperature consisted of fine grains with primary carbides of MC and type for the prealloyed powders. The elementally blended powders exhibited coarse grains with eutectic carbides of MC, and type.
Cobalt and VC powders were ball milled with M2 grade high speed steel powders under various ball to powder ratios. The powders milled under higher ball to powder ratio become finer, more irregular and have a broader size distribution, and thus possess a lower compressibility and a better sinterability regarding densification. Increasing the ball to powder ratio lowered the sintering temperature to obtain the density level necessary to isolate all the pores. Lowering the sintering temperature is very critical to maintain fine microstructure since grain and carbide coarsening are accelerated by higher sintering temperature due to more liquid phase formation. The powders obtained by ball milling at 20 to 1 ratio has the lowest compressibility but has the best sinterability, almost compatible to unmilled pure M2 powders. A sintered body over 97% theoretical density with fine microstructures having average grain size of ~10 microns was obtained from the powder by sintering at 1260 for 1 hour in vacuum. XRD results indicate that two types of carbides are mainly present in the sintered structure, MC and type. The MC type carbides are more or less round shaped and mainly located at the grain boundaries whereas the type are angular shaped and mainly located inside the grains.