Electronic waste (E-waste) has become a long-standing global concern. People are purchasing new affordable and improved technologies long before the end-of-life (EOL)’s of their old devices, which is leading to overconsumption and growing volumes of e-waste. At present, official data indicates that 80% of the volume of e-waste is not formally treated globally. The complex nature of e-waste recycling processes is a significant challenge.
The metaverse has become a trendy topic for both academics and practitioners in recent years. While the metaverse is still in a developmental stage, it is anticipated that it will bring significant changes to the existing paradigm in marketing, information system, psychology and many other disciplines (Dwivedi et al., 2022)
A promising approach to enhance catalytic performance of supported heterogeneous nano-metal catalysts is to uniformly disperse active nanoparticles on the support. In this work, N-doped carbon-modified graphene (G@NC) nanosheet is designed and prepared to anchor Pd–Fe bimetallic nanoparticles (Pd–Fe/G@NC). The N-doped carbon modification on graphene surface could construct a sandwich-like structure (G@NC), which not only prevented the re-stacking of graphene nanosheets but also provided confined space for stable anchoring of bimetallic Pd–Fe nanoparticles. Benefitted from the unique structural property and synergetic effect of metal Pd and Fe species, the as-obtained Pd–Fe/G@NC composite displays excellent catalytic activity toward 4-nitrophenol reduction reaction with a turnover frequency of 613.2 min− 1, which is far superior to that of the mono-metal counterparts (Fe/G@NC and Pd/G@NC). More importantly, Pd–Fe/G@NC catalyst also exhibits favorable catalytic performance in the reduction of other nitroaromatic compounds (nitrobenzene, 4-nitrotoluene, 4-chloronitrobenzene, and so on). In addition, Pd–Fe/G@NC can catalyze the oxidation of furfuraldehyde to furoic acid with a high yield of 88.64%. This work provides a new guide for rationally designing and developing advanced supported heterogeneous bimetallic catalyst.
When treating the 3rd instar larvae of the diamondback moth (DBM), Plutella xylostella, with sublethal doses (LC10) of chlorantraniliprole, indoxacarb and spinosad via leaf dipping, their tolerance to insecticides was significantly enhanced. By analyzing the differentially expressed genes (DEGs), we found a number of genes that respond commonly or specifically to the test insecticides. With the criteria of p value < 0.05 and Log2FC > 1/ < -1, a total of 476, 367 and 410 genes were determined to respond specifically to chlorantraniliprole, indoxacarb and spinosad, respectively. Gene Ontology (GO) analysis revealed that the cuticle reorganization is commonly associated in all treatments and the oxidative stress-related process is also shown in all insecticides except spinosad. Finally, the DEGs seemingly related with enhanced tolerance were chosen for further characterization, and reliability of the transcriptome data were confirmed by quantitative PCR. The functional categories of these DEGs included mostly detoxification related genes, cuticle proteins, energy metabolism and transcriptional regulation. While the commonly responding DEGs suggest that they are likely involved in defense against common intoxication process, the DEGs specifically responded to each insecticide suggests the presence of unique tolerance mechanisms to each insecticide depending on their different structure and mode of action. Their possible roles in the tolerance/resistance development were discussed.
To identify genes that commonly respond to the treatment of different insecticides and are responsible for the toleranceenhancement, transcriptomic profiles of larvae treated with sublethal doses of the five insecticides were compared withthat of untreated control. A total of 117,181 transcripts with a mean length of 662 bp were generated by de novo assembly,of which 35,329 transcripts were annotated. Among them, 125, 143, 182, 215 and 149 transcripts were determined tobe up-regulated whereas 67, 45, 60, 60 and 38 genes were down-regulated following treatments with these five insecticides.The most notable examples of commonly responding over-transcribed genes were two cytochrome P450 genes and ninecuticular protein genes. In contrast, several genes composing the mitochondrial energy generation system were significantlydown-regulated in all treated larvae. Considering the distinct structure and mode of action of the five insecticides tested,the differentially expressed genes identified in this study appear to be involved in general chemical defense at the initialstage of intoxication. Their possible roles in the tolerance/resistance development were discussed.
To identify genes that commonly respond to the treatment of different insecticides, 3rd instar larvae of the diamondback moth, Plutella xylostella, were treated with sublethal doses (<LC10) of chlorantraniliprole, cypermethrin, dinotefuran, indoxacarb and spinosad via leaf dipping. Then, transcriptomic profiles of treated larvae were compared with that of untreated control. A total of 117,181 transcripts in average with a mean length of 662 bp were generated by de novo assembly, of which 35,329 transcripts were annotated. Among them, 207, 153, 336, 360, and 262 transcripts were determined to be up-regulated whereas 117, 47, 92, 115, and 81 genes were down-regulated following treatments with chlorantraniliprole, cypermethrin, dinotefuran, indoxacarb and spinosad, respectively. Finally, with the criteria of >10 X fold change (FC) and p < 0.05 or >4 X FC, p < 0.05 and q < 0.2, the genes commonly over-transcribed in all treated insects were selected and their over-transcription levels were confirmed by quantitative PCR. These commonly responding genes included three cytochrome P450 genes (Cyp303a1, Cyp6a20 and CYP9E2), three cuticle protein genes (LM-8, LM-19 and TM-A3A), lavesin-1, acyl-CoA D11 desaturase, glucose dehydrogenase, nose resistant to fluxetine protein 6, chorion peroxidase and protein yellow. As the five test insecticides have distinct structure and mode of action, the genes identified in this study were suggested to be involved in general chemical defense at the initial stage of intoxication. Their possible roles in tolerance and resistance development were further discussed.
Acetylcholinesterase (AChE) is an enzyme for hydrolyzing neurotransmitter acetylcholine. Soluble form of AChE is generated via alternative splicing and functions as a bioscavenger in Dropsophila melanogaster. In this study, effects of ethanol and acetic acid on the soluble AChE expression were investigated. Treatment of ethanol and acetic acid results in over-expression of soluble AChE in the abdomen in a dose-dependent manner. However, no apparent change in AChE expression was observed in the head. Our finding suggests that the soluble AChE is involved in chemical defense against high concentration of ethanol, which is a common by-product from fermented food,and acetic acid, the main metabolite of ethanol. Thus, high level of ethanol and acetic acid resistance in D. melanogaster appears to be evolved via the induction mechanism of soluble AChE expression.
Acetylcholinesterase (AChE) is a hydrolase that hydrolyzes the neurotransmitter acetylcholine. Soluble form of AChE is generated via alternative splicing and functions as a bioscavenger in Dropsophila melanogaster. In this study, effects of acetic acid on the soluble AChE expression were investigated. Treatment of acetic acid resulted in over-expression of soluble AChE in the abdomen in a dose-dependent manner. The soluble AChE was determined to be expressed in the fat body. However, no apparent change in AChE expression was observed in the head. Our finding suggests that the soluble AChE is involved in chemical defense against high concentration of acetic acid, which is a common by-product in fermenting foods. The high level of acetic acid resistance in D. melanogaster, thus, appears to have been evolved via the induction mechanism of soluble AChE expression.
China and South Korea are both east Asian foreign trade giants. From ancient times to the present, the trade between China and Korea is very intensive. In recent years, the total bilateral trade between China and South Korea has fluctuated due to political and economic influences, but China has been South Korea’s largest foreign trade partner for 17 consecutive years,but the trade disputes between China and South Korea are gradually increasing, there are also many Chinese traders affected by the policy, economic losses. To sum up, this paper is based on the economic trade between China and South Korea. In summary, trade exchanges between China and South Korea will be affected in many ways in an era of increasingly complex international situations, and this article will start from these aspects and propose some solutions (ERD, 2022).
Background : Plants cultivation is hindered by root rot, a major disease caused by the soil-born fungi. The ginseng-cultivated soil is one of the nutritious habitats for soil-borne microorganisms. Bacteria from ginseng-cultivated soil can increase plant growth by supplying nutrients and hormones as well as protecting against pathogenic fungal infections and induced systematic resistance.
Methods and Results : The novel species DCY115T was isolated from ginseng-cultivated soil in Gochang province, Republic of Korea. The isolate was assigned to the genus Paraburkholderia due to its 16S rRNA gene sequence closely proximity to P. xenovorans LB400T (98.8%). Strain DCY115T is gram-negative, facultative aerobic, rod-shaped, non-flagellated, oxidase and catalase positive. The predominant isoprenoid quinone is ubiquinone Q-8. The genomic DNA G + C content is 61.3 mol%. Phenotypic tests and chemotaxonomic analysis place strain DCY115T in the genus Paraburkholderia. DNA-DNA hybridization values between strain DCY115T and closely related reference strains were lower than 51%. The DNA relatedness data in combination with phylogenetic and biochemical tests showed that strain DCY115T could not be assigned to any recognized species. Finally, strain DCY115T showed the plant growth promoting activities of siderophores production, phosphate solubilization, and antagonistic activity against root rot fungal pathogen Fusarium solani (KACC 44891T) and Cylindrocarpon destructans (KACC 44660T).
Conclusion : The results support the novel strain DCY115T as a potential biocontrol agent against root rot fungal pathogen within the genus Paraburkholderia for which the name Paraburkholderia panacihumi is proposed. The type strain is DCY115T (= KCTC52952T = JCM32099T).
Purpose – During the past twenty years, China has developed rapidly in economy. Meanwhile China's economic development has brought great many problems. Sustainable development is to achieve coordination in the ecological, economic and social aspects. Among them, the environment and resource issues are the most critical issues which affecting sustainable development in China. With China's rapid economic development, China's ecological environment is facing the most serious threat in water pollution, air pollution, solid waste pollution and the destruction of forests and biodiversity, resulting in a significant loss of the national economy. This research aims to examine whether the tragedy of the commons has hindered the sustainable development of China's economy or not. On the other hand, we try to analyze a solution to improve this situation. Research design, data, and methodology – Theoretical background study, finding optimization models, and data analysis. Results – In the case of a clear definition of property rights, the air will have a market price. The market price will coordinate pollutant emissions. Conclusions – The tragedy of commons has hindered the sustainable development. The model of China’s Economic development should be changed.
We have investigated the X-ray emission from the shock-heated plasma of the Galactic supernova remnant Kesteven 69 withXMM-Newton. Assuming the plasma is at collisional ionization equilibrium, a plasma temperature and a column absorptionare found to be kT ~ 0.62 keV and NH ~ 2.85 ×1022 cm-2 respectively by imaging spectroscopy. Together with the deducedemission measure, we place constraints on its Sedov parameters.