The demand for automated diagnostic facilities has increased due to the rise in high-risk infectious diseases. However, small and medium-sized centers struggle to implement full automation because of limited resources. An integrated molecular diagnostics automation system addresses this issue by integrating small-scale automated facilities for each diagnostic process. Nonetheless, determining the optimal number of facilities and human resources remains challenging. This study proposes a methodology combining discrete event simulation and a genetic algorithm to optimize job-shop facility layout in the integrated molecular diagnostics automation system. A discrete event simulation model incorporates the number of facilities, processing times, and batch sizes for each step of the molecular diagnostics process. Genetic algorithm operations, such as tournament, crossover, and mutation, are applied to derive the optimal strategy for facility layout. The proposed methodology derives optimal facility layouts for various scenarios, minimizing costs while achieving the target production volume. This methodology can serve as a decision support tool when introducing job-shop production in the integrated molecular diagnostics automation system
This study analyzes the aerodynamic and structural characteristics of an H-Darrieus vertical-axis wind turbine (VAWT) under varying inlet velocities using transient analysis. The k-ε turbulence model and six-DOF were applied to simulate urban environments in the flow analysis, while the structural analysis considered blade momentum of inertia and RPM conditions. The numerical results showed that the drag and lift forces increased by 60% and 53% respectively from the nominal wind speed to the cut-off wind speed conditions. Structural analysis indicated that the maximum Von-Mises stress in the blade did not exceed the yield strength of 69 MPa of PC-ABS, ensuring structural stability. However, the connecting rod exceeded the yield strength of SPCC 270 MPa, suggesting potential failure due to repeated rotational loads. This study confirms that materials with a yield strength of more than 1,100 MPa required for connecting rods to ensure reliable operation at high wind speed. These findings provide important insights for the design of robust VAWTs suitable for extreme environments.
This study aims to optimize the SDC (Spinning Dust Collector) system in amphibious assault vehicle engines through numerical analysis of dust and moisture particle separation efficiency using CFD-DPM. Focusing on an axial cyclone structure, the research evaluates separation efficiency across various particle sizes and flow conditions. The results demonstrate that vortices generated by cyclone blades play a critical role in influencing particle trajectories and improving separation performance. Additionally, the study highlights the significant impact of engine flow conditions and housing design, emphasizing that their careful optimization enhances the system's efficiency in separating dust and water. These findings offer valuable insights into optimizing inlet and outlet flow paths and cyclone housing design, providing a solid foundation for advancing SDC system performance in high-efficiency engines.
ars using diesel have always had problems with reducing exhaust fumes, and have been studied steadily in this regard. There were studies on the remanufacturing effect of DOC catalyst deactivated by diesel vehicle smoke reduction device, analysis of vehicle fire accident cases caused by damage to diesel vehicle smoke reduction device, and related studies on the remanufacturing effect of diesel vehicle smoke reduction device DPF. This study also developed an optimized system for complete combustion of smoke generated by institutions using diesel engines in low-temperature exhaust gases. The main systems to be developed are high-performance heaters, burner structures that can maintain ignition in exhaust flows, and exhaust flow control units that reduce exhaust gas backflow effects caused by diesel engines.
Background: Despite considerable technological advancements, polyspermy remains a significant challenge in in vitro fertilization (IVF) procedures in pigs, disrupting normal embryonic development. Here, we aimed to determine whether optimal fertilization conditions reduce the polyspermy incidence in pigs.
Methods: In vitro -matured oocytes were co-incubated with sperm according to a modified two-step culture system.
Results: In the first experiment, oocytes were briefly co-incubated with sperm, washed in IVF medium, and then moved to fresh IVF medium for 5 or 6 h. Although the 6 h sperm-free cultured group had a higher penetration rate than the 5 h cultured group, the polyspermy rate significantly increased in the 6 h sperm-free cultured group. The gamete co-incubation period was either 20 or 40 min. The 40 min cultured group had a higher rate of blastocyst formation and number of total cells in blastocysts than the 20 min cultured group. In experiment 2, oocytes were inseminated with sperm separated by Pecroll treatment. Percoll treatment increased the rate of oocyte penetration and blastocyst formation compared to the control. In experiment 3, fertilized oocytes were cultured in 25 μL microdroplets (10 gametes/drop) or 500 μL (100 gametes/well) of culture medium in 4-well plates. The large volume of medium significantly reduced the number of dead oocytes and increased the rate of blastocyst formation compared to the small volume.
Conclusions: Collectively, these results demonstrate that various fertilization conditions, including modified co-culture period, active sperm separation, and culture medium volume, enhance fertilization efficiency and subsequent embryonic development by decreasing polyspermy occurrence.
In this study, a model to optimize residual chlorine concentrations in a water supply system was developed using a multi-objective genetic algorithm. Moreover, to quantify the effects of optimized residual chlorine concentration management and to consider customer service requirements, this study developed indices to quantify the spatial and temporal distributions of residual chlorine concentration. Based on the results, the most economical operational method to manage booster chlorination was derived, which would supply water that satisfies the service level required by consumers, as well as the cost-effectiveness and operation requirements relevant to the service providers. A simulation model was then created based on an actual water supply system (i.e., the Multi-regional Water Supply W in Korea). Simulated optimizations were successful, evidencing that it is possible to meet the residual chlorine concentration demanded by consumers at a low cost.
Fast service access involves keeping track of the location of mobile users, while they are moving around the mobile network for a satisfactory level of QoS (Quality of Service) in a cost-effective manner. The location databases are used to keep track of Mobile Terminals (MT) so that incoming calls can be directed to requested mobile terminals at all times. MT reporting cell system used in location management is to designate each cell in the network as a reporting cell or a non-reporting cell. Determination of an optimal number of reporting cells (or reporting cell configuration) for a given network is reporting cell planning (RCP) problem. This is a difficult combinatorial optimization problem which has an exponential complexity. We can see that a cell in a network is either a reporting cell or a non-reporting cell. Hence, for a given network with N cells, the number of possible solutions is . We propose a biogeography based optimization (BBO) for design of mobile station location management system in wireless communication network. The number and locations of reporting cells should be determined to balance the registration for location update and paging operations for search the mobile stations to minimize the cost of system. Experimental results show that our proposed BBO is a fairly effective and competitive approach with respect to solution quality for optimally designing location management system because BBO is suitable for combinatorial optimization and multi-functional problems.
억새와 같은 초본계 바이오매스로부터 cellulose, hemicellulose, lignin 등 주요성분을 추출하기 위해서는 알칼리 전처리가 효율적이며, 본 연구에서는 수산화칼륨(KOH)을 이용한 전처리 조건을 최적화하였다. 전처리 변수의 최적화는 반응표면분석법(RSM)을 적용하였다. RSM의 변수는 3개였으며, 변수범위는 각각 KOH 0.2∼0.8M, 반응온도 110∼190℃ 및 반응시간 10∼90min 이었다. 억새의 알칼리 전처리를 위한 최적조건은 KOH 농도 0.47M, 반응온도 134℃ 및 반응시간 65min 이었다. 최적 전 처리 조건에 따라 전처리를 수행한 후 고형물의 cellulose 함량은 66.1±1.1% 이었으며, hemicellulose 및 lignin 함량은 각각 26.4±0.4%, 3.7±0.1% 이었다. RMS 모델식에 따라 계산된 예측값은 실제값 대비 95% 범위 내에서 유효하였다. 최종적으로 전처리물을 동시당화발효를 통해 검증한 결과 에탄올 생산 수율은 96% 이었다.
A hybrid mid-story seismic isolation system with a smart damper has been proposed to mitigate seismic responses of tall buildings. Based on previous research, a hybrid mid-story seismic isolation system can provide effective control performance for reduction of seismic responses of tall buildings. Structural design of the hybrid mid-story seismic isolation system is generally performed after completion of structural design of a building structure. This design concept is called as an iterative design which is a general design process for structures and control devices. In the iterative design process, optimal design solution for the structure and control system is changed at each design stage. To solve this problem, the integrated optimal design method for the hybrid mid-story seismic isolation system and building structure was proposed in this study. An existing building with mid-story isolation system, i.e. Shiodome Sumitomo Building, was selected as an example structure for more realistic study. The hybrid mid-story isolation system in this study was composed of MR (magnetorheological) dampers. The stiffnessess and damping coefficients of the example building, maximum capacity of MR damper, and stiffness of isolation bearing were simultaneously optimized. Multi-objective genetic optimization method was employed for the simultaneous optimization of the example structure and the mid-story seismic isolation system. The optimization results show that the simultaneous optimization method can provide better control performance than the passive mid-story isolation system with reduction of structural materials.
A사는 발전 플랜트, 오수처리장, 취수, 정수, 배수장, Oil Plant 등 국가 기간 산업현장에서 사용되는 전동 액추에이터를 제조하고 있다. A사가 각 수요처별로 각기 다른 기능을 필요로 하는 Order에 대응하여 제품을 생산하고자 기존의 A사가 적용하고 있는 생산방식인 라인로트생산방식이 가지고 있는 문제점을 파악하여 개선하고자 한다. 본 연구를 통해 시장과 고객의 요구에 유연하게 대응할 수 있도록 다품종 소량생산에 적합한 셀 생산방식으로 변경을 통하여 생산유연화와 생산성향상을 이룰 수 있었다. 이러한 개선을 통하여 다변화하는 고객의 요구에 실시간으로 대응 할 수 있음은 물론이고 생산성향상과 그에 따른 이익창출을 이뤄낼 수 있는 계기가 될 것이다. 또한 A사의 생산 작업자의 업무 능력배양에 긍정적으로 작용하여 일을 하는 재미와 이에 따른 보상의 기대치를 높일 수 있는 계기로 작용하였다.