The Alkali-Metal Thermal to Electric Converter (AMTEC) can be used as a next-generation power generation technology related with a large thermal energy storage. In particular, this technology is expected for the higher efficiency by a cascade power generation with the thermoelectric generator(TEG), and the temperature distribution becomes a very important design parameter in this case. In this study, the temperature distribution of the AMTEC unit was analyzed through CFD analysis, and design points were discussed based on the results.
In this analysis, the analytical model was verified through the normal mode analysis of the piston for the 2.9 liter IDI (indirect injection) engine. Heat transfer analysis was carried out by selecting two cases of applied temperature using the validated model. The first case was a condition of 350℃ on the piston upper surface and 100℃ on the piston body and inner wall. In the second case, the conditions were set to give a temperature of 400℃ on the upper surface of the piston and 100℃ on the piston body and the inner wall. In addition, the temperature distribution due to heat transfer was obtained for the pistons with boundary conditions of two cases, and then the thermal stress distribution due to thermal expansion was obtained using the input. Using this analysis result, the thermal stress caused by thermal expansion due to the thermal conduction of the piston is examined and used as the basic data for design.
Maintenance of power distribution facilities is a significant subject in the power supplies. Fault caused by deterioration in power distribution facilities may damage the entire power distribution system. However, current methods of diagnosing power distribution facilities have been manually diagnosed by the human inspector, resulting in continuous pole accidents. In order to improve the existing diagnostic methods, a thermal image analysis model is proposed in this work. Using a thermal image technique in diagnosis field is emerging in the various engineering field due to its non-contact, safe, and highly reliable energy detection technology. Deep learning object detection algorithms are trained with thermal images of a power distribution facility in order to automatically analyze its irregular energy status, hereby efficiently preventing fault of the system. The detected object is diagnosed through a thermal intensity area analysis. The proposed model in this work resulted 82% of accuracy of detecting an actual distribution system by analyzing more than 16,000 images of its thermal images.
In the past, it. was very difficult to distinguish thermal and non-thermal emission. Broadbent et a1. (1989) has developed a new technique with the help of the IRAS 60 micron emission. The distribution of non-thermal or synchrotron emission in the Galactic disk has been modeled from the 408 MHz all sky survey of Haslam et a1. (1982) after removal of the thermal component.. At. 408 MHz, t.here is very little absorption in the interstellar medium and the distribution along the line-of-sight. is inferred mainly from its presumed relationship to other tracers of spiral structure via a. number of fitted parameters. But. at lower frequencies, free-free absorption becomes important and can give some direct. information on the line of sight. distribution. We have modeled the thermal electron density according to the spiral arm models and the distribution of ionized hydrogen in the Galactic plane by Lockman (1976) and Cersosimo et. al. (1989) and have made predictions to compare with the surveys of Dwarakanath et al. (1990) at. 34.5 MHz and .Jones and Finlay (1974) at 29.9 MHz. The result confirms that the absorption model of the synchrotron emissivity in the Galactic plane is broadly corrected and illustrates the potential of the absorption technique.
Recently, Introduced the study of fire resistance design. This paper has been written about the cross-sectional temperature distribution in the square CFT columns are painted in Intumescent paint. Study on the thermal properties Intumescent paint is not yet clear. Thus, the finite element analysis was performed by reference to the properties of other materials. FEM results Were compared with the experimental results. It offer a range of thermal properties considering the thermal mechanism of the fire-resistant paint as a result.
In order to work out statistics of environmental functions of indoor landscape plants in architectures, this study aims to conduct a simulation of how much control plants have over overheating phenomena in atria in summer, involve themselves in air current speed and maintain indoor comfort index, with a numerical analysis model.
Thus, nine kinds of representative plants which are usually used for indoor environments were selected, and purified with two irrigations a day for two weeks. And then, their transpiration and photosynthesis amounts were measured three times with a photosynthesis analysis system LICO-6400 at 38℃, which is the highest temperature in the atrium in summer. The data were organized, and another three plants with similar transpiration and photosynthesis amounts were selected.
The leaf area which accounts for 10% green zone rate inside the atrium was calculated, and the leaf surplus was removed. And then, the plants were left inside the atrium, and transpiration amount and temperature change were automatically measured for three hours. The maximum temperature change by transpiration of plants was found to be 2.21~2.92℃, which means 0.21~0.23℃ per every 100cm² of leaf area.It is hard to see air current change in atria as convection by plants as the change is at undetectible level with a distribution of 0.08~0.005m/s.
However, if air current change is made with fans even in natural air current situations, air current becomes active inside atria as rather cold air moves upward. Therefore, if 0.5 m/s of air current change is made with upward and downward fans in atrium models, the air current speed in the entire atrium converges to the level which gives the most comfort to human.