검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 11

        1.
        2017.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The predictive control system using model-based predictive control is a very effective way to optimize the present inputs considering the states and future errors of the reference trajectory, but it has a drawback in that a control input matrix must be repeatedly calculated with a long calculation time at every sampling for minimizing future errors in a predictive interval. In this study, we applied the neural network simulating the predictive control method for the trajectory tracking control of the mobile robot to reduce complex control method and computation time which are the disadvantage of predictive control. In addition, the neural network showed excellent performance by the generalization even for a different reference trajectory. Therefore, The controller is designed by modeling the model-based predictive control gains for the reference trajectory using a neural networks. Through the computer simulation, the proposed control method showed better performance than the general predictive control method.
        4,000원
        2.
        2015.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        ABSTRACT PURPOSES: It is desirable for buses to be parallel to the face of the bus shelter at a bus stop. In this way, passengers can safely use the buses without moving into the vehicle area. The study was a review of the current bus bay geometric guidelines, to determine whether they lead buses to stop parallel to the face of the bus shelter by analyzing vehicle trajectory. METHODS : A commercial software program for vehicle trajectory analysis was used under our assumptions about bus dimensions and geometric values. The final position of the bus was analyzed for multiple trajectory simulations, reflecting various geometric alternatives. RESULTS: Within the scope of the study, we concluded that the current design guidelines need to be revised by the design values suggested by the study. CONCLUSIONS : The results of the study suggested alternative design values for bus bay geometry, based on the assumption that buses should be parallel to the face of the bus shelter in order to prevent passengers from moving into the vehicle area.
        3,000원
        3.
        2013.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The lack of details of design guideline for zig-zag shaped section approaching central bus stop leads an traffic accident proneness. So, this study analysed the geometric elements of central bus stop area in terms of vehicle dynamics and suggested design alternatives. METHODS: The study analysed a dynamic behaviour of bus moving in and out of zig-zag shaped section using Auto-Turn under scenarios. Based upon dynamic analysis, the study found out the width of overtaking lane is the most influential factor for a safe moving at zig-zag alignment. RESULTS : The width of overtaking lane at design speed of 40, 50, and 60 km/h respectively was suggested given taper ratio of 1 to 10 required for Bus Rapid Transit (BRT), and the lane width is not wider than 4.0m which possibly makes two vehicles using the same lane. Also, the width of overtaking lane which mitigates the taper ratio was suggested with the same restriction about the maximum lane width. CONCLUSIONS: The results of the study can be used to prepare a design guideline on zig-zag shaped alignment of central bus exclusive lanes. The more stable moving is expected by applying the design alternatives suggested, therefore the lower rate of traffic crashes at the vicinity of central bus stops.
        4,000원
        4.
        2012.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The lack of details of guidelines on how to install the Chicane for traffic calming leads the practical difference across the calming areas, so the benefits expected from these facilities are not hardly observed. In this context, this study analysed the relationship between the geometric design alternatives of Chicane with the dynamic behaviour of vehicles in terms of speed and trajectory. METHODS : The study analysed vehicle dynamic behaviour using dynamic analysis program Auto-Turn under various geometric conditions of Chicane. RESULTS : This study suggested the design alternatives of Chicane using terms such as "longitudinal displacement value", "lateral displacement value", etc. which are defined in the study. The suggested combination set is fulfilling the desired or target speed of vehicles and clearance between vehicle and roadside at the same time. CONCLUSIONS : The results from this study can be applied to install Chicane corresponding to the local condition where target speed is 30km/h. The study showed the design alternatives of chicane corresponding to the given road cross-sectional design and clearance to roadside for passenger cars and light truck respectively.
        4,000원
        5.
        2021.06 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        In this study, a preliminary trajectory design is conducted for a conceptual spacecraft mission to a near-Earth asteroid (NEA) (99942) Apophis, which is expected to pass by Earth merely 32,000 km from the Earth’s surface in 2029. This close approach event will provide us with a unique opportunity to study changes induced in asteroids during close approaches to massive bodies, as well as the general properties of NEAs. The conceptual mission is set to arrive at and rendezvous with Apophis in 2028 for an advanced study of the asteroid, and some near-optimal (in terms of fuel consumption) trajectories under this mission architecture are to be investigated using a global optimization algorithm called monotonic basin hopping. It is shown that trajectories with a single swing-by from Venus or Earth, or even simpler ones without gravity assist, are the most feasible. In addition, launch opportunities in 2029 yield another possible strategy of leaving Earth around the 2029 close approach event and simply following the asteroid thereafter, which may be an alternative fuel-efficient option that can be adopted if advanced studies of Apophis are not required.
        6.
        2018.04 KCI 등재 서비스 종료(열람 제한)
        A trajectory control system plays an important role in controlling motions of marine vehicle when a series of way points or a path is given. In this paper, a sliding mode control (SMC)-based trajectory tracking controller for marine vehicles is presented. A small-sized unmanned ship is considered as a control object. Both speed and heading angle of a ship should be controlled for tracking control. The common point of related researches was to separate ship's speed and heading angle in control methods. In this research, a new control law from a general sliding mode theory that can be applied to MIMO (multi input multi output) system is derived and both speed and heading angle of a ship can be controlled simultaneously. The propulsion force and rudder force are also applied in modeling stage to achieve accurate simulation. Disturbance induced by wind is also tackled in the dynamics considering robustness of the proposed control scheme. In the simulation, we employed a way-point method to generate ship's trajectory and applied the proposed control scheme to ship's trajectory tracking control. Our results confirmed that the tracking error was converged to zero, thus demonstrating the effectiveness of the proposed method.
        7.
        2017.12 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        To ensure the successful launch of the Korea pathfinder lunar orbiter (KPLO) mission, the Korea Aerospace Research Institute (KARI) is now performing extensive trajectory design and analysis studies. From the trajectory design perspective, it is crucial to prepare contingency trajectory options for the failure of the first lunar brake or the failure of the first lunar orbit insertion (LOI) maneuver. As part of the early phase trajectory design and analysis activities, the required time of flight (TOF) and associated delta-V magnitudes for each recovery maneuver (RM) to recover the KPLO mission trajectory are analyzed. There are two typical trajectory recovery options, direct recovery and low energy recovery. The current work is focused on the direct recovery option. Results indicate that a quicker execution of the first RM after the failure of the first LOI plays a significant role in saving the magnitudes of the RMs. Under the conditions of the extremely tight delta-V budget that is currently allocated for the KPLO mission, it is found that the recovery of the KPLO without altering the originally planned mission orbit (a 100 km circular orbit) cannot be achieved via direct recovery options. However, feasible recovery options are suggested within the boundaries of the currently planned delta-V budget. By changing the shape and orientation of the recovered final mission orbit, it is expected that the KPLO mission may partially pursue its scientific mission after successful recovery, though it will be limited.
        8.
        2016.11 KCI 등재 서비스 종료(열람 제한)
        Machining error makes the uncertainty of dimensional accuracy of the kinematic structure of a parallel robot system, which makes the uncertainty of kinematic accuracy of the end-effector of the parallel robot system. In this paper, the tendency of trajectory tracking error caused by the tolerance of design parameters of the parallel robot is analyzed. For this purpose, all the position errors are analyzed as the manipulator is moved on the target trajectory. X, Y, Z components of the trajectory errors are analyzed respectively, as well as resultant errors, which give the designer of the manipulator the intuitive and deep understanding on the effects of each design parameter to the trajectory tracking errors caused by the uncertainty of dimensional accuracy. The research results shows which design parameters are critically sensitive to the trajectory tracking error and the tendency of the trajectory tracking error caused by them.