Special equipment used for snow removal is only used in the winter and must be moved into storage during non-winter seasons. However, when moving heavy equipment using a forklift within a limited space, safety accidents may occur due to deformation and damage due to the worker's limited visibility and excessive loading of heavy objects. In this study, the scissors boom of the developed heavy load transporter was conducted in two cases: link structural analysis and position-based structural analysis. In detail, the link structural analysis covers four cases of stress and safety factor according to material and thickness to optimize the specifications of the material selected during development, and the structural analysis according to position covers two cases before and after the lift, when maximum stress concentration is achieved. Safety was evaluated through finite element analysis. As a result of the study, when manufacturing a scissors boom type heavy load transporter that can withstand a load of 10 tons, the link showed safety at SS400 4.5mm or higher, and reinforcement is needed in the upper and lower structures, so it is judged to be useful in applying materials according to the load.
Silicon (Si) has the potential to improve plant growth and stress tolerance. The study aimed to explore Si-involving plant responses and molecular characterization of different Si-responsive genes in alfalfa. In this study, the exogenous supplementation of Si enhanced plant growth, and biomass yield. Si-acquisition in alfalfa root and shoot was higher in Si-supplemented compared to silicon deficient (-Si) plants, implying Si-acquisition has beneficial on alfalfa plants. As a consequence, the quantum efficiency of photosystem II (Fv/Fm) was significantly increased in silicon-sufficient (+Si) plants. The quantitative gene expression analysis exhibited a significant upregulation of the Lsi1, Lsi2, Lsi3, NIP5;1, and NIP6;1 genes in alfalfa roots, while BOR1, BOR4, NIP2, and NIP3 showed no significant variation in their expression. The MEME results further noticed the association of four motifs related to the major intrinsic protein (MIP). The interaction analysis revealed that NIP5;1 and Lsi1 showed a shared gene network with NIP2, BOR1, and BOR4, and Lsi2, Lsi3 and NIP3-1, respectively. These results suggest that members of the major intrinsic proteins (MIPs) family especially Lsi1, Lsi2, Lsi3, NIP5;1, and NIP6;1 genes helped to pass water and other neutral solutes through the cell membrane and those played significant roles in Si uptake and transport in plants. Together, these insights might be useful for alfalfa breeding and genome editing approaches for alfalfa improvement.
Activation of transient receptor potential vanilloid 1 (TRPV1), a calcium permeable channel expressed in primary sensory neurons, induces the release of glutamate from their central and peripheral afferents during normal acute and pathological pain. However, little information is available regarding the glutamate release mechanism associated with TRPV1 activation in primary sensory neurons. To address this issue, we investigated the expression of vesicular glutamate transporter (VGLUT) in TRPV1-immunopositive (+) neurons in the rat trigeminal ganglion (TG) under normal and complete Freund’s adjuvant (CFA)-induced inflammatory pain conditions using behavioral testing as well as double immunofluorescence staining with antisera against TRPV1 and VGLUT1 or VGLUT2. TRPV1 was primarily expressed in small and medium-sized TG neurons. TRPV1+ neurons constituted approximately 27% of all TG neurons. Among all TRPV1+ neurons, the proportion of TRPV1+ neurons coexpressing VGLUT1 (VGLUT1+/ TRPV1+ neurons) and VGLUT2 (VGLUT2+/TRPV1+ neurons) was 0.4% ± 0.2% and 22.4% ± 2.8%, respectively. The proportion of TRPV1+ and VGLUT2+ neurons was higher in the CFA group than in the control group (TRPV1+ neurons: 31.5% ± 2.5% vs. 26.5% ± 1.2%, VGLUT2+ neurons: 31.8% ± 1.1% vs. 24.6% ± 1.5%, p < 0.05), whereas the proportion of VGLUT1+, VGLUT1+/TRPV1+, and VGLUT2+/TRPV1+ neurons did not differ significantly between the CFA and control groups. These findings together suggest that VGLUT2, a major isoform of VGLUTs, is involved in TRPV1 activation-associated glutamate release during normal acute and inflammatory pain.
ATP-binding cassette (ABC) transporter는 다양한 기질을 세포 밖과 세포 안으로 수송하는 대표적인 수송단백질이다. 곤충에서 ABC transporter는 살충제에 대한 저항성을 발달시키는 중요한 역할을 한다. 현재까지 모델곤충인 초파리를 대상으로 ABC transporter의 살충제 교차저항성에 관한 연구는 많이 수행되어오지 않았다. 본 연구에서는 ABC transporter에 속하는 Mdr49A 유전자가 여섯 종류의 살충제에 보이는 교차저항성 기작을 형질전환 초파리를 이용하여 구명하였다. 초파리 91-R과 91-C 계통은 공통된 조상으로부터 유래되었으며 91-R은 60년 이상 DDT에 노출되었지만 91-C는 어떠한 살충제에도 노출되지 않고 유지되어 왔다. 91-R 계통의 MDR49A 단백질에서 유래된 3개의 아미노산 돌연변이를 형질전환 초파리에 과발현 시켰을 때 carbofuran에 대해서 2.0~6.7배 그리고 permethrin에 대해서 2.5~10.5배의 교차저항성을 나타 낸 반면 다른 약제, abamectin, imidacloprid, methoxychlor, prothiofos에 대해서는 어떠한 교차저항성도 나타내지 않았다. 이상의 결과는 Mdr49A 유전자의 과발현과 더불어 3개의 아미노산 돌연변이는 두 개 약제, carbofuran과 permethrin에 대해 교차저항성 기능을 한다고 제시하고 있다
Cadmium (Cd) toxicity is a serious limitation for agricultural production. In this study, we explored tolerance mechanism associated with Cd toxicity tolerance in alfalfa plants. We used three distinct alfalfa cultivars M. sativa cv. Vernal, M. sativa cv. Zhung Mu, and M. sativa cv. Xing Jiang Daye in this study. Cd showed declined chlorophyll score in Xing Jiang Daye compared with Zhung Mu and Vernal. No significant change observed among the cultivars for root and shoot length. Atomic absorption spectroscopy analysis demonstrated a significant accumulation of Cd, Fe, S and PC in distinct alfalfa cultivars. However, Zhung Mu and Xing Jiang Daye declined Cd accumulation in root, where Fe, S and PC incremented only in Zhung Mu. It suggests that excess Cd in Zhung Mu possibly inhibited in root by the increased accumulation of Fe, S and PC. This was further confirmed by the response of Fe (MsIRT1) and S transporters (MsSULTR1;2 and MsSULTR1;3), and MsPCS1 genes associated with Fe, S and PC availability and translocation in roots and shoots. It suggests that specially the transcript signal inducing the responses to adjust Cd especially in Zhung Mu. This finding provides the essential background for further molecular breeding program for forage crops.
Glucose is universal and essential fuel of energy metabolism and in the synthesis pathways of all mammalian cells. Glucose is the one of the major precursors of lactose synthesis using glycolysis result in producing milk fat and protein. During the milk fat synthesis, lipoprotein lipase (LPL) and CD36 are required for glucose uptake. Various morecules such as acyl-CoA synthetase 1 (ACSL1) activity of acetyl-CoA synthetase 2 (ACSS2), ACACA, FASN AGPAT6, GPAM, LPIN1 are closely related with milk fat synthesis. Additionally, glucose plays a major role for synthesizing lactose. Activations of lactose synthesize enzymes such as membranebound enzyme, beta-1,4-galactosyl transferase (B4GALT), glucose-6-phosphate dehydrogenase (G6PD) are changed by concentration of glucose in blood resulting change of amount of lactose production. Glucose transporters are a wide group of membrane proteins that facilitate the transport of glucose over a plasma membrane. There are 2 types of glucose transporters which consisted facilitative glucose transporters (GLUT); and sodium-dependent transport, mediated by the Na+/glucose cotransporters (SGLT). Among them, GLUT1, GLUT8, GLUT12, SGLT1, SGLT2 are main glucose transporters which involved in mammary gland development and milk synthesis. However, more studies are required for revealing clear mechanism and function of other unknown genes and transporters. Therefore, understanding of the mechanisms of glucose usage and its regulation in mammary gland is very essential for enhancing the glucose utilization in the mammary gland and improving dairy productivity and efficiency.
A cell frequently utilizes glucose as a fuel of energy and a major substrate of lipid and protein syntheses. A regulation of glucose movement into and out of the cells is precisely controlled by cooperative works of passive and sodium‐dependent active processes. At least 13 glucose cotransporter (Slc2a, GLUT) isoforms involve in passive movement of glucose in cells. The efferent ductules (EDs) play in a number of important functions for maintenance of male fertility. In the present study, using real‐time PCR analysis, we determined gene expression of five Slc2a isoforms in the EDs. In addition, we compared expression levels of these Slc2a isoforms according to postnatal development ages, 1 week, 2 weeks, 1 month, and 3 months. Results from the current study showed that expression of Slc2a1, Slc2a3, and Slc2a5 mRNAs reached the highest levels at 1 month of age, followed by a transient decrease at 3 months of age. In addition, the level of Slc2a4 mRNA reminded at steady until 1 month of age and was significantly reduced at 3 months of age, whereas the highest level of Slc2a 8 mRNA was detected at 2 weeks of age. Data from the present study indicate a differential expression of various Slc2a isoforms in the ED according to postnatal ages. Thus, it is believed that glucose movement through the epithelial cells in the ED would be regulated by the coordinated manner among Slc2a isoforms expressed at a given age.
Amino acid transporters play an important role in supplying organic nutrient to cells. The expression profile of L-type amino acid transporter 1 (LAT1) and its subunit 4F2 heavy chain (4F2hc) on different differentiation stages in 4-NQO induced rat tongue carcinogenesis was examined using immunohistochemical analysis. The gradually increasing LAT1 and 4F2hc expression detected during the multistep progressive change shows that the protein may have an important role i n the multistep tongue c arcinogenesis. Conclusively, LAT1 and 4F2 hc c an b e a useful b iomarker f or a better understanding of multistep tongue carcinogenesis, while the specific inhibition o f LAT1 and 4F2 hc would be a new rationale for suppressing tumor cell growth in tongue cancer.
Amino acid transporters play important roles in supplying nutrients to cells. In our current study, we investigated the expression of LAT1 and measured the amino acid uptake in ameloblast cultures to further elucidate the roles of this transporter during the differentiation of these cells. RT-PCR, observations of cell morphology, Alizaline red-S staining, and uptake analyses were performed following the experimental induction of differentiation in the cultures. LAT1 mRNA was detectable and found to gradually increase over time whereas LAT2 mRNA was not evident in the ameloblast cultures. Transcripts of 4F2hc, a cofactor of LAT1 and LAT2, were also found to be expressed in ameloblast cultures and increase with time. Amelogenin mRNA was expressed in the early stage ameloblast cultures. L-leucine uptake was observed to increase over 14 days of growth in culture. Our data suggest that LAT1 has a key role in the differentiation of ameloblasts and in providing these cells with neutral amino acids, including several essential amino acids.
Amino acid transporters are essential for the growth and proliferation in all living cells. Among the amino acid transporters, the system L amino acid transporters are the major nutrient transport system responsible for the Na+-independent transport of neutral amino acids including several essential amino acids. The L-type amino acid transporter 1 (LAT1) is over-expressed to support cell growth in malignant tumors. The double stranded RNA-mediated RNA interference (RNAi) analysis can be in a wide variety of eukaryotes to induce the sequence-specific inhibition of gene expression. In this study, we examined the effect of LAT1 short interfering RNA (siRNA) on cell growth using siRNA of LAT1 in the KB human oral squamous cell carcinoma. In the RT-PCR analysis and western blot analysis, the siRNA of LAT1 inhibited expressions of LAT1 mRNA and protein. The uptake of [14C]L-leucine was inhibited by siRNA of LAT1. In the MTT assay, the siRNA of LAT1 inhibited the growth of the KB cells in the time-dependent manner, indicating that the growth inhibition of KB cell by the siRNA of LAT1 is induced by the blocking of neutral amino acid transport mediated by LAT1. These results suggest that the transport of neutral amino acids including several essential amino acids into the KB human oral squamous cell carcinoma is mediated mainly by LAT1. Further, the LAT1 would be a new target for the inhibition of cancer cell growth.
Amino acid transporters play an important role in supplying organic nutrient to cells. The expression of L-type arnino acid transporter 1 (LATl) and its subunit 4F2 heavy chain (4F2hc) was evaluated to deterrnine the alterations to these transporters in oral norrnal mucosa (ONM) , oral precancerous lesion (OPL) and oral squamous cell carcinoma (OSCC). Sections from formalin-ftxed, paraffm-embedded S따nples of ONM, OPL or OSCC were exarnined using immunohistochernical staining to detect LATl and 4F2hc proteins. 까le LATl and 4F강lC expression increased progressively from ONM to hypeφ,Iastic and to dysplastic lesions and OSCC. In partiαlar, LATl rnay be a more S야dftc indicator of tumor prog~않sion than 4F2hc. 까le gradually increasing LA Tl and 4F2hc expression detected during the multistep progressive change shows that the protein rnay have an important role in the early stages of multistep oral carcinogenesis. In addition, the specific inhibition of LA Tl and 4F2hc rnight be a new rationale to suppress oral cancer progression.
Arrùno acid transpoπers play an important role in supplying nutrition to cells and for cell proliferation. System L is a major nutrient transport system responsible for the Na+-independent transport of large neutral amino acids including several essential amino acids. In malignant tumors, a system L transporter L-type amino acid transporter 1 (LATl) is upregulated to support tumor cell growth. In the present study, we have examined the expression and function of system L amino acid transporter in FaDu human pharyngeal squamous carcinoma cells. RT-PCR, real-time quantitative RT-PCR and westem blot analysis have revealed that the FaDu cells express LATl together with its associaω19 protem 4F2hc, whereas the FaDu cells do not express the other system L isoform L-type amino acid transporter 2 (LAT2). 까le uptake of L-(14Clleucine by FaDu cells is Na+-independent and almost completely inhibited by system L selective inhibitor 2-aminobicyclo-(2,2,1)-heptane-2- carboxylic acid (BCH). The profiles of the inhibition of L-[I4Cllellcine uptake by variolls amino acids in the FaDu cells are comparable with those for the LA T1 expressed in Xenopus 。()(찌es. π1e majority of L-[I4Clleucine uptake is, therefore, mediated by LAT1 in the FaDu cells. These results suggest that the transport of neutral amino acids including several essential amino acids in the FaDu human pharyngeal squamous carcinoma cells mediated by LAT1. In addition, specific inhibition of LAT1 by such agents as BCH in pharyngeal squamous cell carcinomas will be a new rationale for anti-cancer therapy.
It has been said that amino acid transporters play an important role in supplying nutrition to normal and cancer cells and for cell proliferation. System L is a major nutrient transport system responsible for the Na+-independent transport of large neutral amino acids including several essential amino acids. In malignant tumors, a system L transporter L-type amino acid transporter 1(LAT1) is up-regulated to support tumor cell growth. In the present study, we have examined the function of LAT1 and its expression in the KB human oral epidermoid carcinoma cells. RT-PCR, western blot analysis and immunohistochemical analysis have revealed that KB cells express LAT1 in the plasma membrane together with its associating protein 4F2hc, whereas KB cells do not express the other system L isoform LAT2. The uptake of L-[14C]leucine by KB cells is Na+-independent and almost completely inhibited by system L selective inhibitor BCH. The profiles of the inhibition of L-[14C]leucine uptake by amino acids in the KB cells are comparable with those for the LAT1 expressed in Xenopus oocytes. The majority of L-[14C]leucine uptake is, therefore, mediated by LAT1 in the KB cells. These results suggest that the uptakes of neutral amino acids including several essential amino acids in the KB oral epidermoid carcinoma cells mediated by LAT1. In addition, specific inhibition of LAT1 by such agents as BCH in human oral squamous cell carcinomas will be a new rationale for anti-cancer therapy.