The primary objective of this study is to evaluate a systematic design’s effectivity in remediating actual uranium-contaminated soil. The emphasis was placed on practical and engineering aspects, particularly in assessing the capabilities of a zero liquid discharge system in treating wastewater derived from soil washing. The research method involved a purification procedure for both the uranium-contaminated soil and its accompanying wastewater. Notably, the experimental outcomes demonstrated successful uranium separation from the contaminated soil. The treated soil could be self-disposed of, as its uranium concentration fell below 1.0 Bq·g−1, a level endorsed by the International Atomic Energy Agency for radionuclide clearance. The zero liquid discharge system’s significance lay in its distillation process, which not only facilitated the reuse of water from the separated filtrate but also allowed for the self-disposal of high-purity Na2SO4 within the residues of the distilled filtrate. Through a comparative economic analysis involving direct disposal and the application of a remediation process for uranium-contaminated soil, the comprehensive zero liquid discharge system emerged as a practical and viable choice. The successful demonstration of the design and practicality of the proposed zero liquid discharge system for treating wastewater originating from real uranium-contaminated soil is poised to have a lasting impact.
Objectives of this study were to identify the hotspot for displacement of the on-line water quality sensors, in order to detect illicit discharge of untreated wastewater. A total of twenty-six water quality parameters were measured in sewer networks of the industrial complex located in Daejeon city as a test-bed site of this study. For the water qualities measured on a daily basis by 2-hour interval, the self-organizing maps(SOMs), one of the artificial neural networks(ANNs), were applied to classify the catchments to the clusters in accordance with patterns of water qualities discharged, and to determine the hotspot for priority sensor allocation in the study. The results revealed that the catchments were classified into four clusters in terms of extent of water qualities, in which the grouping were validated by the Euclidean distance and Davies-Bouldin index. Of the on-line sensors, total organic carbon(TOC) sensor, selected to be suitable for organic pollutants monitoring, would be effective to be allocated in D and a part of E catchments. Pb sensor, of heavy metals, would be suitable to be displaced in A and a part of B catchments.
산업 발전에 따른 물 사용량과 폐수 배출량의 증가로 환경오염에 대한 사회적 인식과 제도적 개선에 대한 관심이 높게 부각되고 있으며, 기후 변화로 가뭄 빈발과 지역적 물 부족 문제를 해결하기 위한 대안으로 물 재이용 시스템 공급을 활성화시키는 것이다. 해당 사업장내 하(폐)수의 재이용 시스템 도입에 대한 제반 여건은 기술적으로는 상당 수준으로 정착되고 있으나 물 재이용 시스템에서 발생되는 오염원 배출에 대해서는 여전히 환경 보전 및 수자원 보호 등의 사회적 책임과 기술적 한계로 인하여 물 재이용 시스템 활성화에 난항을 겪고 있다. 이에 발생 폐수를 당해 사업장안에서 재이용하고 오염원은 고형화하여 외부 처리하는 폐수 무방류 배출시설의 도입에 대해 실적 사례 소개와 하수 재이용 시스템과의 연계성에 대해 소개하고자 한다.
The predictive capacity of wastewater treatment facility in the industrial park was estimated by the traditional method and on-the-spot survey such as certification of wastewater report and the invoices of water supply and ground water supply. The ratios of a converted wastewater to supplied industrial water between traditional method and on-the-spot survey in the estimation methods were different. By using traditional method, the business type of clothes, accessary and fur production had 77.18 % of waste ratio of wastewater and 10.72 m3/day·1000 m2 unit mass of wastewater as the highest among 9 business types. With the respect to the on-the-spot survey, food manufacturing business type had 75 % of waste ratio of wastewater and 8.35 m3/day·1000 m2 unit mass of wastewater as the highest values. The amount of wastewater from on-the-spot survey method was 541 m3/day less than one from traditional method.
Most small laundry factory has been operated without not only environmental expertise but also technical process. The objective of this study is to get the optimal coagulation dosage for satisfaction of discharge permission standard of laundry wastewater treatment plant(WTP) effluents by jar test.The coagulants are alum and sodium hydroxide(NaOH), coagulants aids is polymer. Also, the best coagulation reaction was shown in the following conditions ; Alum 4.13g/L, NaOH 1.03g/L, Polymer 0.27g/L on average. The optimal coagulation dosage could be reduced costs to 4.43 million won a year. It was considered that operating a small WTP was an important technical data in same industry.
본 연구는 2002년 1월부터 2003년 5월까지 오염원이 비교적 단순한 산지하천에서의 무기 영양염 및 유기물 변동을 고찰하기 위해 낙동강 지류인 대천천의 상류에서 실시되었다. 조사지점은 인위적인 오염이 없는 DC1, 주위의 식당과 민가에서 생활하수가 유입되는 DC2, DC3, DC4그리고 부분적으로 수질이 자연 정화된 DC5이다. 전기전도도, 탁도, BOD는 하수의 유입으로 인하여 DC2에서 급격히 증가하였다가 DC5에서 다시 낮아졌다. 수층의 NH
Water samples from several wastewater treatment plants and two industry drains in Gyeongsangbukdo were investigated for concentration levels of micropollutants. Samples were taken totally four times from May to November of 2008 and tested for seven factors including pesticide, 1,4-Dioxane and Perchlorate which had been big issues for Nakdong river because of their contaminations. As results, 2,4-D, Alachlor, and BEHA were not detected while BEHP was detected at some sampling sites. 1,4-Dioxane and Perchlorate were also detected in wide ranges from several sampling sites. Therefore, continuous supervising and monitoring systems needed to be invested for proper management for micropollutants since those micropollutants could affect human health and aquatic system with low concentration levels.