검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 12

        1.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Friction welding, which uses heat and plastic flow to join metals, is expanding across industries due to its ability to weld heterogeneous alloys and simple process. However, process research is essential for materials with complex geometries, and limited research has been conducted on friction welding between cast and sintered metals. This study analyzed the mechanical properties and microstructural evolution of the joint by controlling the rotational speed and friction pressure, which affect the removal of the heat-affected zone in friction welding of casted SCM440 and sintered F-05-140. Hardness mapping and microstructure observations with material transition were performed to investigate the correlation between phase behavior and welding conditions. These results are anticipated to reduce costs and improve the mechanical properties of key mobility components.
        4,000원
        3.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, experiments and simulations were performed for fillet joint friction stir welding according to tool shape and welding conditions. Conventional butt friction stir welding has good weldability because heat is generated by friction with the bottom of the tool shoulder. However, in the case of fillet friction stir welding, the frictional heat is not sufficiently generated at the bottom of the tool shoulder due to the shape of the tool and the shape of the joint. Therefore, it is important to sufficiently generate frictional heat by slowing the welding speed as compared to butt welding. In this study, experiments and simulations were carried out on an aluminum battery housing made by friction stir welding an extruded material with a fillet joint. The temperature of the structure was measured using a thermocouple during welding, and the heat source was calculated through correlation analysis. Thermal elasto-plastic analysis of the structure was carried out using the calculated heat source and geometric boundary conditions. It is confirmed that the experimental results and the simulation results are well matched. Based on the results of the study, the deformation of the structure can be calculated through simulation even if the tool shape and welding process conditions change.
        4,000원
        4.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The bead geometry according to the welding conditions was analyzed through the laser fillet welding experiment of 9% Ni steel, and the relationship between the shear strength and the five bead geometry measured by selecting the main bead geometry of the fillet weld was analyzed. Among the welding conditions, the welding conditions that directly affect the penetration depth are welding speed and laser power, and the working angle and beam position have a great influence on the formation of leg of vertical and horizontal members. The bead shape, which greatly affects the shear strength, is the horizontal member length, neck thickness, and weld length, and has a proportional relationship with the shear strength. As a result of confirming the relationship between shear strength and bead shape through the derivation of the trend line, it was confirmed that the length of the vertical member, whose R2 value was 0.92, was most closely related to the shear strength.
        4,000원
        5.
        2017.04 구독 인증기관 무료, 개인회원 유료
        Two steel-frame joint specimens with welding joint parts were constructed and evaluated. Two types of displacement load, monotonic and cyclic, were used to evaluate the steel-frame joint specimens. According to the experimental results, the maximum moment of the cyclic test results was 80% smaller than that of the monotonic test results. Local buckling was observed in the compression area of the H-beam flange. A finite element analysis model based on the experimental results was proposed to analyze the steel-frame joint specimens. The numerical results predicted the experimental behavior of the steel-frame joint specimens well. Therefore, it is possible to use the proposed finite element analysis model to evaluate middle- and low-rise steel-frame buildings constructed in South Korea.
        3,000원
        6.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Abstract: In this study, finite element analysis modeling is proposed to evaluate middle- and low-rise steel-frame buildings constructed in South Korea. Two steel-frame joint specimens with welding joint parts were constructed and evaluated. Two types of displacement load, monotonic and cyclic, were used to evaluate the steel-frame joint specimens. According to the experimental results, the maximum moment of the cyclic test results was 80% smaller than that of the monotonic test results. Local buckling was observed in the compression area of the H-beam flange. A finite element analysis model based on the experimental results was proposed to analyze the steel-frame joint specimens. The numerical results predicted the experimental behavior of the steel-frame joint specimens well. Therefore, it is possible to use the proposed finite element analysis model to evaluate middle- and low-rise steel-frame buildings constructed in South Korea.
        4,000원
        7.
        2016.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the curvature FSW experiments were performed with the 2 mm thickness of Al 5083-O using by the 5 axis(X/Y/Z/A/C) position control system. For the mechanical test of the butt joints, the tungsten heavy alloy as the tool material without necessary after finishing the heat treatment such as quenching was used. In particular, the insertion depth and the welding speed was changed at the constant rotation speed in order to select the optimum FSW condition. The test results were visually satisfactory for the approximate joint length of 300 mm. Sound joint was formed at the condition of 1.9 mm-1000 rpm-100 mm/min and its tensile strength of joint was the most high almost the same as that of the base material.
        4,000원
        8.
        2014.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to decrease a stress shielding effect shown in the hip joint. To conduct this study, the clad materials were produced by using an explosion welding method with two materials that were different in the elastic modulus like Ti-6Al-4V alloy and pure Ti. As for the clad materials, the Ti-6Al-4V alloy with large elastic modulus was designed as the neck of femur, and the pure Ti with small elastic modulus as the body of femur. The joints of clad materials formed by the explosion welding showed the typical wave shape, and its thickness was about 0.2㎛. New crystal or grain structure was not formed in the joints. In addition, the Vickers hardness in the joints formed the middle value between the base metal and clad metal. As a result of manufacturing prototype by processing the clad materials in three dimensions, this study gained good shape, and if it is to be applied to clinical in the future, this researcher can expect good results. From the result of this research above, it may be summed up as follows. It is considered as the stress shielding phenomenon showed on the hip joint can be decreased to a certain degree if this researcher is to utilize two clad materials with different elastic modulus like Ti-6Al-4V alloy and pure Ti
        4,000원
        9.
        2014.02 구독 인증기관 무료, 개인회원 유료
        In this study, a large modulus of elasticity of the titanium alloy in use, to create artificial hip stress shielding effect appears to reduce the head portion is excellent in the strength of Ti-6Al-4V, making bone pusher which requires low elastic modulus relative modulus of pure titanium grade 2, using a small two metal after welding by explosion welding hip was made. Explosion pressure welding by the welding region with respect to the mechanical properties and the tissue was observed.
        3,000원
        10.
        2010.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Stress distribution and deformation on the cross tension type spot welded lap joint subjected to out of plane tensile load were investigated by finite element method. For the rational design of spot welded joint, it is needed to assess to repeatedly the fatigue life of the joint with various dimensions and welding conditions. In this paper, an automation of repeated process of fatigue life assessment for spot welded cross tension type joint was studied. The process is related to stress analysis in vicinity of weld-toe and fatigue life assessment based on analyzed stress distribution. With the change of design condition including dimensions and welding heat input, the above two works have to be performed. Using the commercial tool for system integration, ModelCenter, an automation of the repeated process for spot welded cross tension type joint based on 2D modeling was achieved. In this automation system, data exchanges between programs regardless of commercial and parametric studies for optimal design can be performed.
        4,000원
        11.
        2006.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Friction welding of particulate reinforced aluminum composites was performed and the following conclusions were drawn from the study of interfacial bonding characteristics and the relationship between experimental parameters of friction welding and interfacial bond strength. Highest bonded joint efficiency (HBJE) approaching was obtained from the post-brake timing, indicating that the bonding strength of the joint is close to that of the base material. For the pre-brake timing, HBJE was . Most region of the bonded interface obtained from post-brake timing exhibited similar microstructure with the matrix or with very thin, fine-grained layer. This was attributed to the fact that the fine-grained layer forming at the bonding interface was drawn out circumferentially in this process. Joint efficiency of post-brake timing was always higher than that of pre-brake timing regardless of rotation speed employed. In order to guarantee the performance of friction welded joint similar to the efficiency of matrix, it is necessary to push out the fine-grained layer forming at the bonding interface circumferentially. As a result, microstructure of the bonded joint similar to that of the matrix with very thin, fine-grained layer can be obtained.
        4,000원
        12.
        2017.04 서비스 종료(열람 제한)
        A finite element analysis modeling is proposed to evaluate welding joint part of steel-frame. Based on the experimental results, A finite element analysis model was proposed to analyze the welding joint of steel-frame specimens. The numerical results predicted the experimental behavior of the welding joint of steel-frame specimens well. Therefore, it is possible to use the proposed finite element analysis model to evaluate middleand low-rise steel-frame buildings constructed in South Korea.