검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 327

        281.
        2007.01 KCI 등재 서비스 종료(열람 제한)
        본 논문에서는 본 연구논제(2007)에서 개발된 COMBINE-GRNNM-GA(Type-1)으로부터 최적형태의 구조를 가진 모형을 구성하고, 입력층노드의 기상인자를 제거하기 위하여 불확실성 분석을 실시하였다. 훈련과정중에 가장 최소의 평활인자를 가진 입력층변수는 COMBINE-GRNNM-GA(Type-1)에서 제거되었으며, 변형된 COMBINE-GRNNM-GA(Type-1)은 기상학적 변수의 새로운 최소 평활인자를 구하기 위하여 재훈련된다. 최소 평활인
        282.
        2007.01 KCI 등재 서비스 종료(열람 제한)
        본 연구의 목적은 결측 혹은 미계측 증발접시 증발량과 우리나라에서 계측되고 있지 않은 알팔파 기준증발산량의 산정을 위하여 유전자 알고리즘이 내재된 일반화된 회귀신경망모형을 개발하고 적용하는데 있다. 우리나라에서는 장기간동안 증발산계를 이용하여 알팔파 기준증발산량의 관측이 시행되지 않고 있으므로, 본 연구에서는 Penman-Monteith(PM) 공식을 이용하여 산정된 값을 계측된 알팔파 기준증발산량으로 가정하였다. 본 연구를 통하여 최적 증발접시 증발량
        283.
        2006.11 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 화강풍화토 지반에 시공된 PHC 매입말뚝의 지지력의 평가를 위해 인공신경망을 적용하였다. 오류역전파 인공신경망의 적용성을 증명하기 위해 168개의 PHC 매입말뚝의 현장시험 데이터가 사용되었다. 연구결과 오류역전파 인공신경망의 말뚝지지력 평가가 동재하시험결과와 잘 일치함을 보여주었으며, 이러한 결과는 인공신경망을 이용한 PHC 매입말뚝의 지지력 평가가 신뢰성이 있음을 보여준다.
        284.
        2006.09 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 FRP Rebar로 보강된 철근콘크리트 보의 휨성능을 평가할 수 있는 모형을 개발하기 위하여 인공신경망 중 다층인식자 모형을 사용하였다. 인공신경망 모형에 사용될 학습자료들은 기존 연구자료들의 데이터를 이용하였다. 입력층의 독립변수는 휨성능에 주요 요소인 폭, 유효깊이, 압축강도, FRP 보강비, FRP 균형철근비을 사용하였다. 출력층 종속변수는 실험에서 측정된 모멘트 성능을 사용하였다. 개발된 인공신경망 모형은 GFRP, CFRP, AFRP Rebar 적용이 모두 가능하며, 모형의 검증은 다른 선행 연구자들이 수행한 자료를 이용하였다. 인공신경망 모형 추정결과 ANN(0.05) 모형의 경우에 비교적 정확한 휨성능 추정값을 나타낸 반면, ANN(0.1) 모형에서는 다소 오차가 발생하였다. 인공신경망 모형의 검증결과 주어진 실험 데이터 값과 비교적 일치하고 있음을 확인할 수 있었다. 또한, 휨성능 평가 변수에 대한 민감도 분석결과 유효깊이의 영향이 가장 크고 FRP 철근비, FRP 균형철근비, 압축강도, 폭으로 분석되었다.
        285.
        2006.08 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 상층기상자료, 자동 기상 관측망 자료 및 신경망기법을 사용하여 단시간 강우 예측 모형을 개발하였다. 호우를 동반한 이송 기상 시스템의 이동 경로가 라디오존데로부터 획득할 수 있는 상층기상 자료 즉 상층 풍향자료와 동일한 방향으로 이동한다는 가정 하에 원거리에서 발생하는 기상현상의 발달과정을 판단 할 수 있는 알고리즘을 개발하고, 이러한 원거리 입력 자료와 예측하고자 하는 값 사이의 비선형 상관관계를 연결하는 기법으로 인공 신경망 기법을 도
        286.
        2006.06 KCI 등재 서비스 종료(열람 제한)
        게임의 발전에 따라 게임에 등장하는 NPC(Non-Player Character)들의 지능 또한 중요성을 더해 가고 있다. 단순히 이동하고 플레이어를 공격하기만 하는 수준을 넘어서 WPC들 역시 다양한 기술과 전술을 사용하는 것이 최근의 MMORPG 게임의 추세이다. 본 논문에서는 신경망과 유전자 알고리즘을 이용하여 롤플레잉 게임에 사용되는 캐릭터에게 학습 및 적응 능력을 부여하는 방법을 제안한다. 제안된 지능 캐릭터가 얼마나 게임의 규칙과 전술을 잘 학습하고 적응하는지를 살펴보기 위하여 본 논문에서는 간단한 게임 모델을 제작하여 실험하였다. 캐릭터는 탱커(Tanker), 딜러(Dealer), 힐러(Healer)의 3가지 종류가 있으며, 지능 캐릭터 집단은 신경망과 유전 알고리즘으로 학습되고 FSM으로 움직이는 적 캐릭터 집단과의 전투를 통해 학습한다. 실험 결과 지능 캐릭터가 전투를 통해 자신과 적의 능력에 따른 적절한 전투 방식을 스스로 학습하고, 게임 규칙의 변화에 적응하는 것을 볼 수 있었다.
        287.
        2006.03 KCI 등재 서비스 종료(열람 제한)
        구조물이 손상을 받으면 그 구조물의 동적특성인 고유진동수, 감쇠비, 모드형상 등이 변한다. 본 논문에서는 구조물이 손상을 받을 때 고유진동수의 감소율에 대한 특성을 알아보고 그 감소율을 이용한 구조물의 손상평가를 다룬다. 손상의 유무뿐만 아니라 손상의 위치와 정도까지도 고유진동수의 감소율만으로 파악하고자 하였으며 인공신경망을 이용하였다. 신경망에 사용되는 자료는 다른 연구와 달리 해석 자료로부터 얻어지는 오차 없는 자료뿐만 아니라 실측자료를 가상하여 오차를 포함하는 자료를 대상으로 하였으며, 고유진동수의 감소율로 훈련된 인공신경망을 활용하여 구조물의 손상 위치와 정도를 파악할 수 있었다.
        288.
        2006.03 KCI 등재 서비스 종료(열람 제한)
        FRP 판은 외부 부착된 보강 판의 효과적인 부착강도의 증진으로 실질적으로 부착강도에 대한 많은 연구가 수행되어왔다. 선행연구자들은 이러한 부착강도를 알아보기 위하여 다양한 변수를 설정하여 실험을 통하여 FRP 판의 부착강도를 규명하였다. 그러나, 이러한 부착강도를 알아보기 위한 실험은 장비구축의 비용과 시간 소비가 많이 되고 수행하기 어렵기 때문에 국한적으로 수행되고 있다. 본 연구는 선행연구자들의 부착실험 데이터를 다양한 신경망 모형과 알고리즘을 적용하여 최적의 인공신경망 모형을 개발하는데 그 목적이 있다. 인공신경망 모형의 출력층은 부착강도, 입력층은 FRP 판의 두께, 폭, 부착 길이, 탄성계수, 인장강도와 콘크리트의 압축강도, 인장강도, 폭을 변수로 선정하여 학습을 수행하였다. 개발된 인공신경망 모형은 역전파 학습 알고리즘을 적용하였으며, 오차는 0.001범위에 수렴되도록 학습을 하였다. 또한, 일반화 과정은 Bayesian 기법을 도입함으로써 보다 일반화된 방법으로 과대적합의 문제를 해소하였다. 개발된 모형의 검증은 학습에 이용되지 않은 다른 선행연구자들의 부착강도 결과 값과 비교함으로서 실시하였다.
        289.
        2006.03 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 최대우도법과 인공신경망 모형에 의해 카테고리 분류를 수행하고 각각의 분류 성능을 비교 평가하였다. 인공신경망 모형은 오류역전파 알고리즘을 이용한 것으로서 학습을 통한 은닉층의 최적노드수를 결정하여 카테고리 분류를 수행하도록 하였다. 인공신경망 최적 모형은 입력층의 노드수가 7개, 은닉층의 최적노드수가 18개, 그리고 출력층의 노드수가 5개인 것으로 구성하였다. 위성영상은 1996년에 촬영된 Landsat TM-5 영상을 사용하였고, 최대우도법과 인공신경망 모형에 의한 카테고리 분류를 위하여 각각의 카테고리에 대한 분광특성을 대표하는 지역을 절취하였다. 분류 정확도는 인공신경망 모형에 의한 방법이 90%, 최대우도법이 83%로서, 인공신경망 모형의 분류 성능이 뛰어난 것으로 나타났다. 카테고리 분류 항목인 토지 피복 상태에 따른 분류는 두 가지 방법에서 밭과 주거지의 분류오차가 큰 것으로 나타났다. 특히, 최대우도법에 의한 밭에서의 태만오차는 62.6%로서 매우 큰 값을 보였다. 이는 밭이나 주거지의 특성이 위성 영상 촬영시기에 따라 나지의 형태로 분류되거나 산림, 또는 논으로도 분류되는 경향이 있기 때문인 것으로 보인다. 차후에 카테고리 분류를 위한 각각의 클래스의 보조적인 정보를 추가한다면, 카테고리 분류 향상이 이루어질 것으로 기대된다.
        290.
        2005.07 KCI 등재 서비스 종료(열람 제한)
        수질오염 사고를 판단하기위한 경보모형은 다중퍼셉트론과 다층신경망, 뉴로-퍼지 모형들로 구성되었으며, 개발된 기준축에 따른 안정, 주의, 경고 상태를 학습하였다. 수질예측 모형에 유출예측 모형을 연계하고 경보모형을 결합하여 인공지능 시스템을 구축하였으며, 구축된 시스템을 GUI로 구현하였다. GUI 화면은 초기화면, 자료 전처리 과정, 유량예측 과정, 수질예측 과정, 경보시스템의 순으로 진행된다. 수질오염 사고에 대한 시나리오를 작성하여 시스템의 적용성을
        291.
        2005.07 KCI 등재 서비스 종료(열람 제한)
        평창강 수질자동측정망 실시간 자료를 이용하여 강우시와 무강우시로 구분하여 분석하였다. 강우시에 측정된 TOC 자료는 무강우시 측정된 자료에 비해 평균값, 최대값, 표준편차가 크게 나타났으며, 강우시의 DO 자료는 무강우시에 측정된 자료보다 낮아 유량이 수질변화에 영향을 미치는 것으로 분석되었다. 신경망 모형과 뉴로-퍼지 모형으로 수질예측 모형을 구성하고, 적용하였다. LMNN, MDNN, ANFIS 모형은 TOC 모의에서 DO 예측에서는 LMNN, MD
        292.
        2005.06 KCI 등재 서비스 종료(열람 제한)
        유량과 수질의 관계를 분석하는 것은 매우 중요하다. 하천의 실시간적 관리를 위해서는 유량과 수질의 측정이 동일한 지점에서 동시간적으로 이루어져야 보다 효과적이다. 그러나 수질자동측정망 지점과 T/M 수위관측소가 원거리에 위치한 경우들이 있으며, 평창강 수질자동측정망 지점이 그 중 하나이다. 이러한 지점에서는 보다 정확한 유량 산정과 이를 활용한 예측 프로그램이나 시스템이 요구된다. 이번 연구에서는 미계측 지점인 평창강 수질자동측정망 지점에 유량예측 신경
        293.
        2004.09 KCI 등재 서비스 종료(열람 제한)
        본 논문에서는 신경망 모형을 이용해서 개발된 홍수유출 예측 시스템의 적용성을 검토하였다. 홍수유출 예측을 위한 신경망 모형을 공주, 부여지점에 적용하였으며, 신경망 모형을 입력층, 은닉층, 출력층으로 구성하였다. 입력층에는 강우자료와 홍수량 자료를 출력층에는 홍수유출량이 예측되도록 구성하였다. 홍수유출 예측 시스템 구성시 예측모형 선정을 위해 신경망 모형과 상태공간 모형을 이용하여 홍수시 실시간 하천유출량 예측을 수행하였다. 두 모형의 예측결과 비교시
        294.
        2004.06 KCI 등재 서비스 종료(열람 제한)
        본 논문에서는 월 댐유입량을 예측하는데 있어서 기상예보정보를 활용한 뉴로-퍼지 시스템의 적용성을 검토하였다. 뉴로-퍼지 알고리즘으로 퍼지이론과 신경망이론의 결합형태인 ANFIS(Adaptive Neuro-Fuzzy Inference System)을 이용하여 모형을 구성하였다. ANFIS의 공간분할에 의한 제어규칙의 선정에 있어 퍼지변수가 증가함에 따라 제어규칙이 기하급수적으로 증가하는 단점을 해결하기 위해 퍼지 클러스터링(Fuzzy Clustering)
        296.
        2004.03 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        Final disposal of radioactive waste generated from Nuclear Power Plant (NPP) requires the detailed information about the characteristics and the quantities of radionuclides in waste package. Most of these radionuclides are difficult to measure and expensive to assay. Thus it is suggested to the indirect method by which the concentration of the Difficult-to-Measure (DTM) nuclide is estimated using the correlations of concentration - it is called the scaling factor - between Easy-to-Measure (Key) nuclides and DTM nuclides with the measured concentration of the Key nuclide. In general, the scaling factor is determined by the log mean average (LMA) method and the regression method. However, these methods are inadequate to apply to fission product nuclides and some activation product nuclides such as 14 and 90 . In this study, the artificial neural network (ANN) method is suggested to improve the conventional SF determination methods - the LMA method and the regression method. The root mean squared errors (RMSE) of the ANN models are compared with those of the conventional SF determination models for 14 and 90 in two parts divided by a training part and a validation part. The SF determination models are arranged in the order of RMSEs as the following order: ANN model
        297.
        2004.02 KCI 등재 서비스 종료(열람 제한)
        본 연구는 비선형성이 강한 강우-유출의 특성을 고려하여 홍수시 하도의 유출을 예측하고 하천유역의 홍수예경보에 이용하기 위하여 신경망 시스템의 모형화 가능성을 검증하였다. 신경망을 이용한 실시간 하도홍수 예측모형(Neural River Discharge-Stage Forecasting Mudel; NRDFM)은 낙동강 유역의 왜관 및 진동 지점의 홍수량 예측에 적용하였다. NRDFM에 의한 하도홍수량의 왜관 및 진동 지점 예측결과를 실측치와 비교검토한 결
        298.
        2004.01 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 홍수시 다목적댐의 효율적 운영을 위하여 상류로부터 유입되는 홍수유입량을 실시간으로 예측하기 위해 역전파 신경망 모형을 사용하여 댐유입량 예측모형(Neural Dam Inflow Forecasting Model; NDIFM)을 개발하였다. NDIFM은 다목적댐에 의한 하류의 홍수조절 비중이 큰 낙동강의 남강댐 유역에 적용하였으며, 입력자료로는 댐유역 평균강우량, 실측 댐유입량, 예측 댐유입량 통을 사용하여 실시간 댐유입량 예측의 가능성을 검
        299.
        2004.01 KCI 등재 서비스 종료(열람 제한)
        국내에서 예상되는 물부족 현상을 극복하기 위해서는 수문 현상의 이해를 통한 수자원의 안정된 확보, 관리, 개발 등 수자원 관련 기술격의 발전이 필수적이라 하겠다. 물순환계통의 올바른 이해와 적합한 모형의 개발 및 검증을 위해서는 강우 및 토양수분의 대규모 원격측정이 필수적일 뿐 아니라 관측 격자 내에서 일어나는 변화도에 대한 이해가 필요하다. 가까운 장래에 예상되는 전구 관측 토양수분자료의 격자크기인 10km는 중ㆍ소규모 지역의 수문ㆍ기상모델 적용에 한