레이더 신호처리론 포함하여 무선통신 시스템의 성능향상을 위한 수신신호의 도래방향 추정기술 중, MUSIC과 ESPRIT와 같은 방법들은 수신신호 벡터로부터 얻어진 상관행렬의 고유치 분해를 통하여 도래방향을 정도 높게 추정할 수 있는 초고분해 알고리즘들로 잘 이용되어 왔다. 그러나, 이러한 방법들은 계산의 복잡성으로 인하여 실시간 처리에 장애가 되어 왔으며, 어레이 안테나의 물리적인 결함에 대한 보정을 요구한다. 이에 대한 해결방법으로서 신경망 모델을 이용한 도래방향 추정방법들이 연구되어 왔으나, 복수의 신호가 존재할 경우 신경망 모델에 대한 대규모 학습량을 요구하고, 실시간 처리가능성에 대한 명확한 해를 제공하지 못한다. 본 연구에서는 상호결합형 신경망 모델을 이용하여 도래방향을 추정하기 위한 방법을 제안하고, 컴퓨터 시뮬레이션을 통하여 실시간 처리가능성을 보여주었으며, 제안된 방법이 MUSIC 보다 더 좋은 추정치를 제공한다. 게다가, 제안된 방법은 대규모 학습을 요구하지 않는다. 즉, 도래방향을 추정하기 전에 상호결합계수를 신경망에 할당할 뿐이다.
GIS기법과 원격탐사 기법은 수문학의 지형자료 구축과 응용 분야에 활발하게 이용되고 있으며 다방면에서 많은 연구가 진행 중이다. 본 연구에서는 산악지역에서 토양 특성과 토지 피복 상태에 따라 유출 특성이 어떻게 나타나는지를 CN값을 산정하여 평가 하였다. 토지 피복 분류에 신경망 기법을 사용하여 보다 적합한 분류 방법을 모색하고자 했고, CN값 산정을 위한 연산에 GIS기법출 사용하였다. 우선 샘플지역을 선정하여 토지 피복의 정확도를 평가하면, 기존의
본 연구에서는 낙동강 상류유역의 병렬 다목적댐군인 안동 및 임하다목적 댐의 장기간 유입량을 산정하는데 공간추계 신경망모형이 사용되었다. 공간추계 신경망모형은 역전파 알고리즘으로 LMBP와 BFGS-QNBP를 각각 사용하였다. 공간추계 신경망모형의 구조는 입력층, 은닉층 및 출력층의 3개의 층과 차례대로 8-8-2개의 노드로 구성되어 있다. 입력층 노드는 안동 및 임하다목적 댐의 월평균유입량, 월면적강우량, 월별 증발접시 증발량과 월평균기온으로 구성되어
본 연구에서는 상수관의 개량사업을 보다 효율적으로 실시 할 수 있는 방법으로 국내 실정에 적합한 상수관로의 노후도 조사방법을 이용하여 매설된 관의 노후도를 예측 근거한 최적 개량 모형을 제시하였다. 노후도 예측 모형은 확률론적 신경망 이론을 바탕으로 관별 노후도 정도를 5개 등급으로 구분하며 산정된 관별 노후도 등급 및 관경을 바탕으로 최대 잔존수명을 산정하였다. 최적 개량 모형은 관의 유지보수, 갱생, 교체의 시기 및 비용을 산정하는 것으로 최단경로흐
많은 학자들은 자료의 특성을 분석함으로써 장래를 예측하고자 끊임없이 노력하여 왔으며, 이는 아마도 확정론적 방법과 추계학적 방법으로 크게 대별할 수 있을 것이다. 그러나 예측을 하기 전에 먼저 자료의 특성을 파악하는 것은 모형 구축과 예측을 실행하는데 있어서 매우 중요하다 할 수 있다. 이러한 견지에서 최근 확정론적 방법으로 알려진 비선형 동역학적인 방법이 여러 분야에서 관심의 대상이 되고 있다. 본 연구에서는 비선형 동역학 시스템을 해석하기 위하여 P
컨테이너 물동량 예측은 항만과 항만의 개발에 있어서 매우 중요하다. 일반적으로 이동평균법, 지수평활법, 회귀분석과 같은 통계적인 방법들은 물동량 예측에서 많이 사용되어졌다. 하지만, 컨테이너 물동량 예측에 영향을 주는 여러 가지 요소들을 고려해 보면 다중병렬처리시스템인 신경망을 이용하는 것이 효과적이다. 본 연구는 신경망의 역전파학습알고리즘을 이용하여 컨테이너 활동량을 예측하였다. 신경망을 이용하여 영향력 있는 요소들을 선별하였으며, 선별된 요소들을 이용하여 물동량 예측을 하였다. 또한 제안된 신경망 알고리즘과 통계적인 방법의 예측들을 비교하였다.
컨테이너 처리량(CHC)은 항만의 능력을 나타내는 중요한 지표다. 그러나 중국항만의 컨테이너 처리능력에 대한 연구는 부족하며, 연구결과 또한 예측치와 실제치와의 차이가 크다. 이는 컨테이너처리량이 다양한 경제적인 측면을 내포하고 있고 예측모델의 선택이 매우 어렵다는데 기인한다. 대체로 지금까지 사용되어왔던 회귀분석, 신경망분석 등은 과거행태모델을 벗어나지 못하고 있어 경제체제나 항만물동량의 동태적변화에 대한 고려가 결여되어 있다. 따라서 본 논문에서는 동태적 보정인과모델을 사용한 동태적 예측법을 사용해 보았고 그 결과 보다 신뢰성이 높고 현실성이 있는 연구결과를 도출할 수 있었다.
This study was carried out to evaluate the artificial neural network algorithm for water quality forecasting in Chungju lake, north Chungcheong province. Multi-layer perceptron(MLP) was used to train artificial neural networks. MLP was composed of one input layer, two hidden layers and one output layer. Transfer functions of the hidden layer were sigmoid and linear function. The number of node in the hidden layer was decided by trial and error method. It showed that appropriate node number in the hidden layer is 10 for pH training, 15 for DO and BOD, respectively. Reliability index was used to verify for the forecasting power. Considering some outlying data, artificial neural network fitted well between actual water quality data and computed data by artificial neural networks.
수질 인자들은 다양하고 관계가 복잡하여 수질 변화를 예측하는데 많은 어려움이 있다. 따라서 입력과 출력이 비교적 용이하고 비선형 예측에 적합한 신경망 모형을 이용하여 금강유역 공주지점의 DO, BOD, TN에 대한 월수질 예측을 수행하고 ARIMA 모형과 비교하여 적용 가능성을 검토하였다. 사용된 신경망 모형은 학습을 위해 BP(Back Propagation) 알고리즘을 적용하였으며 학습을 향상시키기 위한 모멘트-적응학습율(Moment-Adaptive
본 연구에서는 중소하천수계에서 수문학적 예측을 위하여 Hybrid Neural Networks의 일종인 반경기초함수(RBF) 신경망모형이 적용되었다. RBF 신경망모형은 4종류의 매개변수로 구성되어 있으며, 지율 및 지도훈련과정으로 이루어져있다. 반경기초함수로서 가우스핵함수(GKF)가 이용되었으며, GKF의 매개변수인 중심과 폭은 K-Means 군집알고리즘에 의해 최적화 된다. 그리고 RBF 신경망모형의 매개변수인 중심, 폭, 연결강도와 편차벡터는 훈련
This study aims at the development of the model for a forecasting of water quality in river basins using artificial neural network technique. Water quality by Artificial Neural Network Model forecasted and compared with observed values at the Sangju 1 and Dalsung stations in Nakdong river basin. For it, a multi-layer neural network was constructed to forecast river water quality. The neural network learns continuous-valued input and output data. Input data was selected as BOD, DO, discharge and precipitation. As a result, it showed that method Ⅲ of three methods was suitable more than other methods by statistical test(ME, MSE, Bias and VER). Therefore, it showed that Artificial Neural Network Model was suitable for forecasting river water quality.
본 연구에서는 낙동강 진동지점에서 일유출량을 예측하기 위하여 신경망모형이 제시되었다. 신경망모형의 구조는 CASE 1(5-5-1)과 CASE 2(5-5-5-1)로 구성하였으며, 은닉층의 수에 따라 두 가지의 모형으로 분류하였다. 각 신경망모형은 광역최소점과 훈련임계치에 수렴하는데 기존의 역전파훈련 알고리즘(BP) 보다 뛰어난 Fletcher-Reeves 공액구배 역전파훈련 알고리즘(FR-CGBP)과 축적된 공액구배 역전파훈련 알고리즘(SCGBP)을 이용
본 연구는 하천에서 호우의 발생에 따라 하천 유출수문곡선을 예측코자 블랙박스모형의 신경망이론을 적용하여 수문학적인 문제를 규명하고자 하였다. 이를 위해 신경망 이론 중 Levenverg-Marquardt 방법에 의한 오차역전파 알고리즘과 Radial Basis Function Network(RBFN)를 이용하여 IHP 대표유역인 보청청유역에 수문곡선을 적용하여 선행유출량 예측과 미학습 유역의 적용성을 검토하였다. 그 결과 복잡하고 비선형적인 수문계의 강
본 연구에서는 낙동강유역의 주요 수위표지점중 진동수위표지점에서 홍수위를 예측하기위한 신경망모형인 WSANN모형이 제시되었다. WSANN모형은 모멘트방법, 초기조건의 개선 및 적응학습속도에 의해 보완되어진 개선된 역전파훈련 알고리즘을 이용하였고, 본 연구에 사용된 자료는 훈련자료와 테스팅자료로 분할하였으며, 최적 은닉층 노드수를 결정하기 위하여 은닉층노드와 임계학습횟수로부터 경험식이 유도되었다. 그리고 WSANN모형의 보정은 4개의 훈련자료에 의해 실시되