간행물

한국방사성폐기물학회 학술논문요약집 Abstracts of Proceedings of the Korean Radioactive Wasts Society

권호리스트/논문검색
이 간행물 논문 검색

권호

2022 춘계학술논문요약집 (2022년 5월) 328

121.
2022.05 구독 인증기관·개인회원 무료
The high-level nuclear waste disposal system is a structure with a very long life expectancy, and deterioration and cracking of the structure may occur over time. In addition, the high-level nuclear waste disposal system is in complex extreme conditions such as high temperature, groundwater, and radiation. Therefore, we need to develop a highly durable monitoring sensor that can detect the deterioration and crack of structures in extreme conditions. Since the durability of a sensor is closely related to the sensor lifetime, it is essential to predict the sensor lifetime accurately. The sensor lifetime can be predicted through the reliability qualification test. Among them, the accelerated life test conducted under harsh conditions is widely used as a method to shorten the test period. The major factor in carrying out the accelerated life test is to set the appropriate harsh conditions. Therefore, this study experimentally derived the operating limit of the monitoring sensor. It is essential to set the proper harsh conditions when performing the accelerated life test. Through this study, it is judged that it will be helpful in determining the appropriate stress level when performing the accelerated life test for accurate lifetime prediction.
122.
2022.05 구독 인증기관·개인회원 무료
Increasing thermal conductivity of buffer materials makes the disposal tunnel and hole spacings in high-level radioactive waste (HLW) repositories decrease, so that the area of the HLW repository decreases, which gives more choices to choose the HLW repository site and economical cost savings to construct HLW repositories. Thus, developing enhanced buffer materials with improved thermal conductivity is needed. One of the methods to develop enhanced buffer materials is to add additives to the bentonite which is main material for buffer materials. Most additives have high thermal conductivity, but most additives do not swell or less swell than bentonite, so that the swelling pressure of the enhanced buffer materials by additives decreases compared to the swelling pressure of pure bentonite buffer materials. Swelling pressure is an important performance criterion to design buffer materials. Thus, it is important to confirm the swelling pressure of the enhanced bentonite. However, it is not simple to measure the swelling pressure of the buffer materials and furthermore, it takes several days to measure the swelling pressure of the buffer materials. For these reasons, swelling index can be considered to predict the swelling pressure of the enhanced buffer materials relatively. In this study, it was investigated through tests how the swelling index of bentonite-sand mixtures change according to the amount of sand and it was found that the linear relationship between swelling index and sand amount in the bentonite-sand mixtures.
123.
2022.05 구독 인증기관·개인회원 무료
The backfill close the deep geological disposal system by filling the disposal tunnel and the connecting tunnel after the installation of buffer in the disposal hole. SKB and Posiva have established and designed the safety function of the backfill for the common goal of the deep geological disposal system. The safety function of backfill material has been set hydraulic conductivity of less than 10−10 m·s−1, a swelling pressure of 0.2 MPa, a compressive modulus of 10 MPa or a buffer density of 1,950 kg·m−3 or more, and freezing resistance. For the selection of the optimum backfill material, SKB and Posiva developed the concept of the backfill and evaluated the candidate that satisfies the requirements in four steps. In the first step, the performance and function that the backfill material should have were conceptualized. For the second step, laboratory tests and in-depth analysis of the candidate material properties were conducted. At this step, the focus has been on testing with the concept of the block method, using key candidate materials. In step 3, laboratory and large-scale experiments were performed to test engineering feasibility. In addition, design specifications for backfill materials were set based on site conditions, installation methods, and short- and long-term functions of materials. In Korea, it is only now in the step of selecting the concepts of the safety function. Therefore, it is necessary to benchmark the development process based on the previous studies of SKB and Posiva. In this study, candidate materials, experimental methods, and results were analyzed. As a result, the research steps and conditions for the selection of the optimum backfill material were reviewed. Using this study, the research steps of domestic backfill was suggested to develop within a short time for the Korean deep geological disposal system.
124.
2022.05 구독 인증기관·개인회원 무료
To decrease area of the repository for high-level radioactive waste, enhancing the disposal efficiency is needed for public acceptance. Previous studies regarding the performance assessment of KRS and KRS+ repository did not consider area-based variations of the geothermal gradient and rock thermal properties in Korea. This research estimated deposition hole spacing based on performance assessment of a repository using the distribution of geothermal gradient and rock thermal properties in Korea to increase disposal efficiency. Distributions of geothermal gradient, rock thermal properties were investigated based on 2019 Korea geothermal atlas published by Korea Institute of Geoscience and Mineral Resources (KIGAM). Effect of thermal performance parameters was analyzed using coupled thermal-hydraulic numerical simulations, and effect of rock thermal conductivity and deposition hole spacing on the maximum temperature of buffer was relatively large. In addition, distribution maps of thermal performance of a repository and deposition hole spacing were plotted using thermal performance parameters-maximum temperature of buffer regression equations and GIS data given by KIGAM. In the regions showing the highest maximum temperature of buffer in Korea, required deposition hole spacings were 10.5 m, 10.0 m, 10.1 m, respectively for KJ-II, MX-80, and FEBEX bentonite cases, and thereby additional disposal area of 40%, 33.3%, and 34.7% were required compared to that of the KRS+ repository. On the other hand, high disposal efficiency can be obtained in the regions showing the low maximum temperature of bentonite buffer. The methodology provided in this research can be used as one of the references for the selection of domestic candidate repository sites. Additional mechanical performance analysis should be conducted using distributions of mechanical properties of rock mass in Korea.
125.
2022.05 구독 인증기관·개인회원 무료
The criticality analyses considering burnup credit were performed for a spent nuclear fuel (SNF) disposal cell consisting of bentonite buffer and two different types of PWR SNF disposal canister: the KBS-3 type canister and the small standardized transportation, aging and disposal (STAD) canister. The criticality analyses were carried out for four cases as follows: (1) the calculation of isotopic compositions within a SNF using a depletion assessment code and (2) the calculation of the effective multiplication factor (keff) value using a criticality assessment code. Firstly, the KBS-3 type canister containing four SNFs of the initial enrichment of 4.0wt% 235U and discharge burnup of 45,000 MWD/MTU was modelled. The keff values for the cooling times of 40, 50, and 60 years of SNFs were calculated to be 0.74407, 0.74102, and 0.73783, respectively. Secondly, the STAD canister was modelled. The SNFs contained in the STAD canister were assumed to be the enrichment of 4.0wt% and the burnup of 45,000 MWD/MTU. The keff values for the cooling times of 40, 50, and 60 years were estimated to be 0.71448, 0.70982, and 0.70743, respectively. Thirdly, the KBS-3 canister with four SNFs of which the enrichment was 4.5wt% and the burnup was 55,000 MWD/MTU was modelled. The keff values for the cooling times of 40, 50, and 60 years were 0.73366, 0.72880, and 0.72634, respectively. Finally, the calculations were carried out for the STAD canister containing four SNFs of the enrichment of 4.5wt% and the burnup of 55,000 MWD/MTU. The keff values for the cooling times of 40, 50, and 60 years were 0.70323, 0.69946, and 0.69719, respectively. Therefore, all of four cases met the performance target with respect to the keff values, 0.95. The STAD canister showed lower keff values than the KBS-3 canister. This appears to be the neutron absorber plate installed in the STAD canister although the distance among the four SNFs in the STAD canister was shorter than the KBS-3 canister.
126.
2022.05 구독 인증기관·개인회원 무료
A method to effectively scavenge highly mobile radioiodide into a solid material was developed. Under an anaerobic condition, as copper(II) was strongly associated with bicarbonate (HCO3 −) in solution, malachite quickly formed, and then it was gradually transformed to a compact crystal of CuI (marshite) attracting iodide. The formation of CuI crystal was principally led by the spontaneous Cu-I redox reaction centering around the copper phase over the presence of sulfate (SO4 2−). The transformed CuI crystal was poorly soluble in water. Interestingly, this redox-induced iodide crystallization was rather promoted over the existence of anionic competitors (e.g., HCO3 − and SO4 2−). Unlike the conventional methods, these competing anions positively behaved in our system by supporting that the initial malachite was more apt to be reactive to largely attract highly mobile I−. Under practical environments, such a selective I− uptake and fixation into a crystalline form will be a promising way to effectively remove I− in a great capacity.
127.
2022.05 구독 인증기관·개인회원 무료
An objective of a safety assessment for geological disposal is to evaluate the radiological impact by radionuclides release from radioactive wastes. Computational estimation of all radionuclides transport in the disposal system, however, is not neccessary because some radionuclides has negligible effect on radiological doses. For this reason, prioritization of radionuclides list is preceded before the safety assessment. The Korea Atomic Energy Research Institue (KAERI) has assessed the long-term safety of a disposal system for spent nculear fuels. Currently, thirty eight radionuclides and twenty three elements are considered in the safety assessment activity of the KAERI. Nevertheless, a screening process for radionulides selection has not been articulated yet. In this study, we reviewed radionuclides selection process in forign countries to re-establish screening criteria for the KAERI’s radionuclides list. Screeing models of the Swedish Nuclear Fuel and Waste Management Company (SKB), the Deparment of Eenrgy (US DOE), and the Japan Nuclear Cycle Development Istitute (JNC) were compared. We found that each country developed different screening model depending on scenarios of radionuclides release. Nonetheless, there were common properties that determines the importance of radionuclides. These properties for radionuclides include halflife, radiotoxicity (or specific activity), and mobility in underground medium. Based on the review results, we proposed radionuclides selection process to prioritize the importance of radionucldies in the KAERI safety assessment.
128.
2022.05 구독 인증기관·개인회원 무료
A GoldSim Total System Performance Assessment has been developed and utilized for assessment of the various conceptual HLW repositories for spent nuclear fuels during last a few decades. Even though, almost all required parameter values associated with the repository system are frequently assumed or sometimes overestimated, they are still far from being highly reliable. Uncertainties nested in nuclide transport modeling around the repository are mainly dominated by these parametric uncertainties aside from intrinsic model uncertainty. Reliable estimate of the parameter values commonly expressed as probability density functions (PDFs) always require a large amount of measured data. Such input distributions are used as input to the probabilistic assessment program through Monte Carlo simulation to quantitatively provide possible uncertainty of the results. However, in most cases, especially in the safety assessment of the repository which is typically related with both long-time span and wide modeling domain, inefficient observed data from the field measurements are common, making conventional probabilistic calculations rather even uncertain. Since Bayesian approach is known to be especially powerful and efficient in the case of lacking of available data measured, such short data could be compensated by coupling with a priori belief, reducing uncertainty. By allowing the a priori knowledge for incorporating insufficient observed data, which include expert’ elicitation, their beliefs and judgment regarding the parameters as well as recent site-specific measurements, based on the Bayes’ theorem, the older parameter distributions, “prior” distribution can be updated to a rather newer and reliable “posterior” distribution. Newer distributions are not necessarily expressed as PDFs for probabilistic calculation. These updates could be done even iteratively as many times as data values are sequentially available, which calls sequential Bayesian updating, making belief of posterior distributions become much higher by reducing parametric uncertainty. To show a possible way to enhance the belief as well as to reduce the uncertainty involved in parameter for the Bayesian scheme, nuclide travel length in the far-field area of a hypothetical deep borehole spent fuel Repository was investigated. The algorithm and module that have been developed and implemented in GSTSPA through current study was shown to work well for all assumed prior, three sequential posterior distributions and likelihoods.
129.
2022.05 구독 인증기관·개인회원 무료
The natural barrier, a component of the deep disposal system, has site-specific characteristics depending on the site of the repository, and is one of the main considerations for long-term safety evaluation after closure along with the engineered barrier among the multiple barrier systems of the repository. The natural barrier is defined in Korea as the natural underground and surface structures that can restrict the exposure of radioactive waste, human intrusion or groundwater infiltration into a disposal facility, and the transfer of radionuclides. It includes bedrocks and soils surrounding the engineered barriers of radioactive wastes [Notice of the NSSC, No. 2020021]. This study analyzed foreign regulatory requirements related to natural barriers, requirements for natural barrier and performance target of Sweden and Finland (safety functions and target characteristics of natural barriers, e.g. natural barrier composition, geological characteristics, hydrogeological characteristics). Overseas regulations and cases referenced to derive regulations of general safety requirements on natural barrier are IAEA SSG-14, SSMFS 2008:21 in Sweden, STUK/Y/4/2018 in Finland, and POSIVA SKB Report 01, a joint report between POSIVA and SKB. The repository site and repository depth should be chosen so that the geological formation provides adequately stable and favorable conditions to ensure that the repository barriers perform as intended over a sufficient period of time. The conditions intended primarily concern temperature- related, hydrological, mechanical (for example, rock mechanics and seismology) and chemical (geochemistry, including groundwater chemistry) factors. Furthermore, the repository site should be located at a secure distance from natural resources exploited today or which may be exploited in the future [SSMFS 2008:21]. Finland regulations also suggests similar requirements [STUK Y-4-2018]. According to the above regulations, POSIVA SKB report 01 mentions both the host rock and the underground opening as natural barriers and requires a safety function, and the main safety functions of the host rock and underground opening are as follows: (1) Isolation from the surface environment; (2) Favorable thermal conditions; (3) Mechanically stable conditions; (4) Chemically favorable conditions; and (5) Favorable hydrogeological conditions with limited transport of solutes. Such safety functions would provide insight for understanding of the natural barrier of deep geological disposal system.
130.
2022.05 구독 인증기관·개인회원 무료
Discontinuum-based numerical methods can contain the multiple discontinuities in a model and reflect the thermal, hydraulic and mechanical characteristics of discontinuities. Therefore, discontinuum methods can be appropriate to simulate the model which require the detailed analysis of the coupled thermo-hydro-mechanical processes in fractured rock such as geothermal energy, CO2 geo-sequestration, and geological repository of the high-level radioactive waste. TOUGH-3DEC, the three-dimensional discontinuum simulators for the coupled thermo-hydro-mechanical analysis, was developed by linking the integral finite difference method TOUGH2 and the explicit distinct element method 3DEC to describe the coupled thermo-hydro-mechanical processes in both porous media and discontinuity. TOUGH2 handles thermo-hydraulic analysis by the internal simulation module, and 3DEC performs mechanical study based on the constitutive models of porous media and discontinuity with coupling the thermal and hydraulic response from TOUGH2. The thermal and hydraulic couplings are the key processes and should be carefully verified by sufficient cases, so this study performed the thermomechanical and hydro-mechanical simulations which are modelling the analytic solutions including the uniaxial consolidation, fracture static opening, and the heating of a hollow cylinder problems. Each thermo-mechanical and hydro-mechanical verification case is also validated by comparing with the results of the other continuum and discontinuum-based numerical methods. TOUGH-3DEC results follow the analytic solutions and show better accuracy than the continuum-based numerical methods in the static fracture opening problem. The developed TOUGH-3DEC simulator can be expanded to coupled thermo-hydro-mechanical-chemical analysis in fractured rock mass, and the simulator needs to be verified by more complicated coupled processes problems which require in the chemical coupling.
131.
2022.05 구독 인증기관·개인회원 무료
Colloid-facilitated migration has been significantly concerned with the acceleration of the radionuclide mobility in the HLW repository. In the repository system, the compacted bentonite, which is the buffer material, could be the major source for colloid generation; hence, the understanding of colloid generation from the bentonite is the essential to expect the colloid-facilitated radionuclide migration. This study aimed to investigate the colloid generation using a bentonite-based micro-scale flow path system, which called microfluidics. In order to fabricate the microfluidics, direct milling method was applied to make a mold by computer numerical control. The fabricated mold applied to prepare the microfluidic chip by Polydimethylsiloxane (PDMS), in which the size of microchannel was designed to be one micrometer. Initially, sylgard 184 and curing agent mixed and stirred for 10 min, afterwards the bubbles in the paste was removed in the vacuum desiccator for 30 min. Then the paste was poured into the mold, and finally dried for 4 hours at 80°C in a dry oven. The compacted Ca-bentonite chip was prepared by the cold isostatic pressing (CIP) method with the dry density of 1.6 g·cm−3. The microfluidic chip and compacted bentonite chip were assembled by an acryl jig, the flow rate was adjusted by 20 mL syringe equipped syringe pump. The degree of colloid generation accompanied with the erosion of bentonite was gravimetrically examined after the experiment. The effect of the pH and ionic strength on the colloid formation was investigated through the particle size, stability and aggregation. To the best of our knowledge, this is the first examination for the colloid generation using microfluidics; these results would give information to understand the colloid formation from the compacted Ca-bentonite in the HLW repository system.
132.
2022.05 구독 인증기관·개인회원 무료
High level nuclear waste (HLW) is surely disposed in repository in safe by being separated from human life zone. Deep geological disposal method is one of the most potent disposal method. Deep geological repository is exposed to high pressure and groundwater saturation due to its depth over 500 m. And it is also exposed to high temperature and radiation by spent fuels. Thus, HLW repository suffers extremely complex thermo-hydro-mechanical-radioactive condition. Long-term integrity of repository should be verified because the expected lifetime of the repository is over 10,000 years. However, the integrity of monitoring sensors are not reach the endurance lifetime of the repository with present technology. And the disposal condition, thermo-hydro-mechanical-radioactive, should shorten the estimated lifetime of the monitoring sensors. Therefore, it is necessary to improve the long-term integrity of the monitoring sensors. Although long-term tests are required to identify the prolonged durability of monitoring sensors, accelerated tests can help curtail test period. Accelerated tests is classified into accelerated stress test and accelerated degradation test and their methodology and theories are investigated. Their tests are design and proceed by following process: 1) identify failure modes, 2) select accelerated stress parameter, 3) Determine stress level, 4) Determine testing time and number of specimens, 5) Define measurement paremeter and failure criteria, 6) Suggest measurement method and measurement duration. Literature reviews were conducted to identify the influence of the disposal conditions such as thermo-hydro-mechnical-radioactive on integrity of material and monitoring sensors. The investigated data reported in this paper will be utilized to verify the improvement of integrity of monitoring sensors.
133.
2022.05 구독 인증기관·개인회원 무료
Gases such as hydrogen can generate from the disposal canister in high-level radioactive waste disposal systems owing to the corrosion of cooper container in anoxic conditions. The gas can be accumulated in the voids of bentonite buffer around the disposal canister if gas generation rates become larger than the gas diffusion rate of bentonite buffer with the low-permeability. Continuous gas accumulations result in the increase in gas pressure, causing sudden dilation flow of gases with the gas pressure exceeding the gas breakthrough pressure. Given that the gas dilation flow can cause radionuclide leakage out of the engineered barrier system, it is necessary to consider possible damages affected by the radionuclide leakage and to properly understand the complicated behaviors of gas flow in the bentonite buffer with low permeability. In this study, the coupled hydro-mechanical model combined with the damage model that considers two-phase fluid flow and changes in hydraulic properties affected by mechanical deformations is applied to numerical simulations of 1-D gas injection test on saturated bentonite samples (refer to DECOVALEX-2019 Task A Stage 1A). To simulate the mechanical behavior of microcracks which occur due to the dilation flow caused by increase in gas pressure, a concept of elastic damage constitutive law is considered in the coupled hydro-mechanical model. When the TOUGH-FLAC coupling-based model proposed in this study is applied, changes in hydraulic properties affected by mechanical deformations combined with the mechanical damage are appropriately considered, and changes in gas injection pressure, pore pressures at radial filters and outlet, and stress recorded during the gas injection test are accurately simulated.
134.
2022.05 구독 인증기관·개인회원 무료
Since it takes hundreds of thousands of years for the radiotoxicity of spent nuclear fuel to decrease to natural levels, interactions between each repository barrier, climate change, and geological evolutions are inevitable. These processes should be defined as the long-term evolution FEPs and considered in the performance assessment to ensure the long-term safety of the disposal system. The literature survey on geological characteristics and history of the Korean peninsula was conducted, and the list of A-KRS-FEPs which are directly or indirectly related to long-term evolutions was identified in this study. The ice age and geological change are the capital phenomena considered in the exceedingly long-term evolution before/after climate change. The historical data on ice sheets and permafrost were analyzed to investigate the effects of the ice ages on the Korean peninsula. The sealevel changes were investigated based on the research on the coastal terrace to identify the impact on uplift and shoreline change accompanying the ice age. Also, the survey on the geological history data was conducted from the perspective of tectonic activity, metamorphism, igneous activity, and seismic activities to consider the geodynamic evolution of the Korean peninsula. As results, it was suggested that 14 FEPs were directly related to climate change, 18 FEPs were directly related to geological evolution, and 47 FEPs were indirectly relevant to long-term geodynamics. The consent-based FEPs and scenarios for the long-term evolution will be developed shortly, including most of the critical long-term evolution phenomena defined in this study and which are highly probable in domestic disposal conditions. The evaluation and verification of the APro system for long-term safety will accomplish using these FEPs and scenarios.
135.
2022.05 구독 인증기관·개인회원 무료
The geological disposal of spent nuclear fuel is one of the important problems to be solved worldwide. For the safety of the geological disposal, disposal facility is recommended to be constructed in the deep reducing environment of host rocks. As host rocks, rock salt, argillaceous (clay) rock, and crystalline rock have been considered as stable geological formations in various countries. Although various studies have been conducted on crystalline rocks in Korea, there are still few studies on hydrogeochemical evolution in the deep and reducing environment related to the disposal of spent nuclear fuel. Therefore, this study was conducted to identify hydrogeochemical evolution process in granite aquifer which can affect the stability of disposal facility. Groundwater samples for isotope and chemical analysis were collected quarterly adjacent to KURT (KAERI Underground Research Tunnel). As the depth increased, the groundwater changed from Ca-HCO3 type to Na-HCO3 type under the influence of silicate mineral weathering, and the fluorine concentration increased due to the dissolution of fluorine-bearing minerals. However, hydrogeochemical evolution according to the depth was not observed in some wells because of a hydraulic connection through the fracture zone. In addition, the behavior of nitrate and redox-sensitive metals (Fe, Mn, U, Mo) in groundwater was clearly different in the redox condition. Considering these hydrogeochemical processes and hydrogeological factors, a conceptual model of granite aquifers in and around KURT was established. The results of this study will be used as basic data to understand the hydrogeochemical processes and to evaluate and predict the behavior of radionuclides in granite aquifer system.
136.
2022.05 구독 인증기관·개인회원 무료
In order to monitor the long-term condition of structures in nuclear waste disposal system and evaluate the degree of damage, it is necessary to secure quantitative monitoring, diagnosis, and prediction technology. However, at present, only simple monitoring or deterioration evaluation of the structure is being performed. Recently, there is a trend to develop monitoring systems using artificial intelligence algorithms, such as to introduce artificial intelligence-based failure diagnosis technology in nuclear power plant facilities. An artificial intelligence algorithm was applied to distinguish the noise signal and the destructive signal collected in the field. This can minimize false alarms in the monitoring system. However, it is difficult to apply artificial intelligence to industrial sites only by learning through laboratory data. Therefore, a database of noise signals and destructive signals was constructed through laboratory data, and signals effective for quantitative soundness determination of structures were separated and learned. In addition, an adaptive artificial intelligence algorithm was developed to enable additional learning and adaptive learning using field data, and its performance was verified through experiments.
137.
2022.05 구독 인증기관·개인회원 무료
Expansive clays (for examples, bentonites) are favored as buffer and backfill materials because of their low hydraulic conductivity, high swelling potential, and good mechanical properties, and are installed in highly compacted blocks in repositories. Compacted expansive clays have a dual-structure system: macrostructural system which is a complex of clay aggregates with the inter-aggregate pores (macropores) which can be filled by either liquids or gases; microstructural system with the intraaggregate pores between or within clay particles (micropores) which is usually considered to be saturated by liquid. Understanding the dual-strucure system of expansive clays is essential for characterizing and modeling multiphysics (stress-strain, swelling pressure, etc.) in buffers and backfills. Existing multiphysics studies of expansive clays, as in non-expansive soils, were mostly conducted with a single structure approach based on the behavior of macropores, and there have been limitations in the comprehensive interpretation and modeling of experimental results. However, with the recent development of measurement techniques, a lot of available information on the pore structure of compacted expansive clays has been reported, and with the results, a dual-structure approach considering both microstructural and macrostructural systems has been increasingly applied to improve the modeling of multiphysics of expansive clays. This study reviewed the dual-structure system of compacted expansive clays, analyzed previous studies on its evolution according to hydromechanical loading (loading-unloading and wetting-drying paths), and based on these, intended to provide technical knowledge and information needed for multiphysics research of expansive clays-based buffer and backfill for the KRS repository.
138.
2022.05 구독 인증기관·개인회원 무료
Several previous simulation studies using various geochemical models have been carried out in several major analogue sites. The cases are beneficial when these studies provided the possibility of testing the geochemical models to be used to describe the migration of radionuclides in a future radioactive waste repository system. It was possible to interpret the complex transport behaviour of radionuclides such as uranium and thorium in an environment. We organize major natural analogue study sites from the previous literatures that provided information on the general geochemistry of the sites, in terms of groundwater composition and mineralogy. Also, we calculated aqueous speciation and the solid phases most likely to control their solubilities. The results obtained from the previous studies and this study vary depending on the tools used and on the conceptual models followed. Also, the results differed from the actual measured concentrations of trace metals or radionuclide analogues. The results obtained from these tests identify the main mathematical limitations of available geochemical models. However, the modelling results using a geochemical code with the thermodynamic database simulated well the observed behaviour of radionuclides, especially to identify the dominant processes controlling actinide mobilization and fixation. It was a useful outcome in terms of building confidence on the current geochemical tools to predict the concentrations of radionuclide analogues once the major geochemical characteristics were known. This study allows improving specific aspects of geochemical modelling using major natural analogue sites.
139.
2022.05 구독 인증기관·개인회원 무료
The safety assessment of a geological disposal system is performed over a period of hundreds of thousands of years, during which the activity of radionuclides in spent nuclear fuel decreases to natural radioactivity levels. During this period, the biosphere also experiences the long-term evolution of the surface environment including climate, terrain, and ecosystem changes. These changes cause changes in the water balance, which in turn change the pathways of radionuclides in the subsurface. Therefore, it is essential to consider these long-term changes in the surface environment for a reasonable biosphere safety assessment. For this purpose, this study developed the biosphere assessment module considering the long-term evolution of the surface environment, as a sub-module of APro (Adaptive process-based total system performance assessment framework). As a preceding study, the biosphere assessment module was previously developed using COMSOL for hydraulic and radionuclide transport processes, to simulate the pathway of radionuclides traveling from the shallow aquifer to the surface water body and soil. To consider the long-term evolution of the surface environment, the previous module needed to be improved to apply different water balances as boundary conditions of the module at each snapshot, which is a sub-time period divided based on the surface evolution data. To this end, this study utilized SWAT (Soil and Water Assessment Tool) which calculates the water balance using the surface environmental data including climate, terrain, land cover, and soil type. Conceptually, SWAT calculated annual water balance considering surface environmental changes, and certain components (i.e., groundwater recharge and hydraulic head of water bodies) of water balance were transferred to COMSOL as external data to simulate the pathway of radionuclide transport and spatio-temporal variability of radionuclides. At the current stage, the biosphere computational module has been developed to correspond to its conceptual model, and we plan to further test the applicability of the module using different surface environmental data.
140.
2022.05 구독 인증기관·개인회원 무료
The buffer material plays a role in preventing the excessive rise in temperature generated from the high-level radioactive waste by dissipating the decay heat to the rock. For this reason, the buffer material must have thermal properties to ensure the performance of the deep geological repository. This study measured the thermal conductivity of sand-bentonite according to the mixing ratio to improve the thermal properties. The compacted buffer was manufactured with a sand-bentonite mixing ratio of 6:4, 7:3, and 8:2 with 9 to 12% water content. As a result, the thermal conductivity increases as the ratio of sand increases. As a further study, it is necessary to experiment on whether sand-bentonite’s hydraulic, mechanical, and chemical performance is suitable for the stable operation of a repository.