최근 태풍, 국지성 호우로 인한 피해가 증가하면서 산사태의 피해도 크게 증가하며 이에 따른 인명피해 및 재산피해가 늘어나고 있다. 우리나라는 국토의 대부분이 산악지형으로 이루어져 있고 경사가 심하며, 도시화로 인한 산지인근의 개발로 인해 산사태의 피해가 증가하는 추세이다. 따라서 산사태의 발생을 예측하고 분석하기 위한 여러 가지 예측기법과 산사태 위험성 분석에 대한 많은 연구가 진행되고 있다. 또한 매년 등산객들에 의한 산악지형의 활용이 늘어나고 있어 이에대한 안전성 검토가 이루어져야 한다. 본 연구에서는 설악산국립공원의 개방탐방로를 중심으로 각 구간별 인명피해 발생 우려 요인에 대한 분석을 통하여 탐방객 안전관리 방안을 모색하였다. 탐방로 구간의 위험성을 평가하기 위해 대상범위를 설악산국립공원으로 하고 2007년~2013년도의 산지재해이력을 활용하여 GIS기법인 Buffer Zone을 이용하여 분석하였다. 동시에 2013년 10월 설악산국립공원 현지방문을 통해 위험지역을 조사하고 산지재해위험지역이 탐방로 구간에 미치는 영향을 파악하였다.
본 연구는 서울시 산사태 피해저감에 대한 시스템 구축 및 관리를 위하여 과거 서울시에서 발생한 산사태 및 토석류 발생 현장을 조사하고 기후, 지질, 지형 등의 기초 조사 자료를 통해 재해위험요인을 분석하였다. 현장조사는 2010년 및 2011년 에 발생한 산사태 지역을 주 대상으로 하였고, 2009년 이전 산사태의 경우 인명피해가 발생한 곳을 대상지로 하여 조사하였다. 산사태 발생 현장의 조사 항목은 소방방재청 및 산림청의 평가기준을 참고하였다. 조사 자료를 기반으로 한 서울시의 산사태 유형의 비율은 표층 사면의 붕괴가 약 47%였고, 계류에서 토석류 및 계류 유실이 약 26%로 나타났다. 강우의 영향은 누적 강우량 250mm, 및 강우강도 43.4mm 수준에서 산사태가 발생하는 것으로 나타났다. 지질의 경우 주로 변성암을 기반암으로 가지는 곳에서 산사태가 발생하였고, 특히 변성암과 화강암의 기반암 경계부에서 두드러지게 산사태가 발생하는 것으로 나타났다.
가드레일은 방호울타리의 한 종류로 차량이 주행 중 정상적인 주행 경로를 벗어나 도로 외부 또는 대항차로, 보도 등으로 이탈하는 것을 방지하는 것과 동시에 탑승자의 상해 및 차량의 파손을 최소한도로 줄이고 차량을 정상 진행 방향으로 복귀시키는 것을 목적으로 도로 내 교통사고를 방지하고 안정적인 정상 주행을 위해 설치되는 시설물이다. 이러한 가드레일은 일반적으로 무한평지(경사시작점에서 60cm이상)에서의 지반 지지력을 이용하여 가드레일의 안정성을 평가하여 현장시공에 적용한다. 하지만 도로설계규정에 의해 설치되는 가드레일은 보호길어깨(경사시작점에서 50cm)에 설치되어 무한평지 지반 지지력을 확보하기가 현실적으로 힘들기 때문에 가드레일의 지지력 저하 및 방호울타리 시스템의 전반적인 성능저하로 가드레일의 안정성에 문제를 발생시킬 가능성을 내포하고 있다. 이에 본 연구에서는 성토사면에 설치된 가드레일에 차량 충돌 시 가드레일 및 주변 성토사면의 거동특성을 분석하였다. 그 결과, 가드레일 지주의 매입깊이가 증가함에 따라 성토사면의 변위와 응력이 증가하는 것으로 나타났으며, 450mm 깊이에서 지반지지력이 저하되는 것으로 나타났다
최근 환경적 · 사회적으로 문제가 되고 있는 산업폐기물을 지반공학적 재료로 재활용하기 위한 관심이 확대대고 있는 추세이다. 따라서 본 연구에서는 화력발전소의 대표적인 산업부산물인 석탄회 중 저회의 도로 성토용 재료 및 구조물 뒤채움용 재료로의 이용을 위해 폐어망보강 저회의 CBR 특성을 분석하였다. 폐어망의 보강 방법은 지오그리드와 같은 층보강 형태, 그리고 단섬유처럼 불특정보강 형태를 이용하였고, 지지력 시험 결과 CBR 값은 짧게 잘라서 랜덤하게 혼합한 경우보다 층으로 보강하였을 때 더 높은 결과 값을 나타내었다. 또한 보강 층수가 증가할수록 보강효과도 증가하는 경향을 보였다.
본 연구에서는 지반공학적 문제를 발생시키는 고유기질토의 역학적 특성을 알아보고자 실내 시험을 실시하였다. 사용된 고화제는 산업부산물을 재이용한 고화제(NSB)이며 역학적 특성을 비교하고자 고로슬래그시멘트(GSC)를 이용하였다. 사용된 점토는 카오리나이트이며, 휴믹산을 유기물로 이용하여 혼합하였다. 시험 결과 pH는 유기물의 함량이 증가할수록, 양생일이 증가할수록 감소하였다. 일축압축강도는 휴믹산이 증가될수록 감소하였으며, 파괴시 축 변형률은 휴믹산이 증가할수록 증가되는 경향을 나타내었다.
기존의 공항콘크리트 포장설계 방법은 현장 실험을 바탕으로 한 경험적 설계 방법에서, 교통하중 및 환경하중을 고려하여 포장의 잔존 수명까지 예측하는 역학적-경험적 설계 방법으로 변화하고 있다. 미국 FAA의 AC 150/5320-6D(FFA, 1995)에서는 노모그래프를 기반으로 슬래브의 두께를 결정하였으나, 최근에는 3D 유한요소해석을 통해 산출된 응력으로 슬래브 두께를 결정하는 AC 150/5320-6E(FAA, 2009)를 적용하고 있다. 하지만 이 설계방법은 환경하중을 고려하지 않는 단점을 가지고 있다. <br> 박주영 외(2013)는 국내 지역의 기후 특성을 고려하여 국내의 지역별 환경하중을 정량화하는 선행연구를 수행하였다. 또한, 김연태(2013)는 정량화된 환경하중에 교통하중을 적용시켜, 교통하중과 환경하중이 동시에 고려된 공항콘크리트포장의 최대인장응력회귀식을 개발하였다. 김연태(2013)의 선행연구를 통해 개발된 최대인장응력회귀식으로 산출된 최대인장응력은 환경하중이 고려되므로 기존의 설계프로그램(FAAFIELD)의 결과와 상당한 차이를 나타낸다. 공항콘크리트포장의 피로모형이 갖는 변수로는 응력강도비와 허용반복회수가 있으며, 응력강도비의 변화에 따라 그 피로수명의 결과가 매우 상이하므로, 개발된 최대인장응력회귀식과 기존에 사용해온 피로모형으로는 합리적인 콘크리트포장의 피로수명을 얻을 수 없다.본 논문에서는 환경하중과 교통하중이 고려된 합리적인 공항콘크리트포장 피로모형을 선정하였다. 우선 국·내외에서 개발된 공항콘크리트설계 피로모형에는 미공병단, 미국 연방항공청, PCA, NCHRP 등이 있으나, 각각의 피로모형은 파괴 기준, 응력계산방법 등에 따라 서로 다른 결과를 나타낸다. 각 피로모형의 이론 및 배경, 기존 피로모형과의 비교, 민감도 분석 등을 통해 합리적인 피로모형 몇 가지를 우선적으로 선정하였다. 이를 위해, 선행연구에서 개발된 최대인장응력회귀식을 사용하여 환경하중과 교통하중을 고려한 최대인장응력을 산출하였으며, 산출된 최대인장응력을 앞서 선정된 피로모형에 대입한 뒤 허용반복회수를 산출하였다. 최종적으로 각 공항의 설계교통량을 반영하여 포장의 피로수명을 예측하였으며, 예측된 피로수명과 국내의 PCI자료를 통해 측정된 공항콘크리트포장의 수명과 비교·검토하여 가장 합리적인 피로모형을 선정하였다.
도로포장의 하부층은 시공당시 엄격한 다짐관리를 통해 시공되지만, 시간이 경과함에 따라 교통하중과 환경하중에 의해 포장하부의 품질이 저하되며 이는 도로포장의 공용성에 영향을 미친다.(박주영 등, 2012). 또한, 최근 지구온난화에 따른 이상기후로 인해 겨울철 한파가 증가하는 추세이며(기상청, 2012), 이는 포장하부층의 지반 동상과 관련하여 동결융해가 반복됨에 따라 포장하부의 지지력이 저하되고 이에 따라 도로포장의 파손이 발생된다. 이러한 악조건 속에서 포장의 파손 빈도는 급증하는 추세이며, 이에 따라 국내에서는 도로의 유지보수 및 관리에 대한 중요성이 대두 있고, 따라서 포장하부의 상태를 체계적으로 관리하고 적절한 유지보수 시기를 결정함으로서 포장의 공용성을 향상시키는 것은 매우 중요하다.포장하부의 상태를 평가하는 기법으로는 FWD(Falling Weight Deflectometer)가 존재하는데, FWD는 포장체에 하중을 재하 하여 발생되는 처짐값을 여러개의 지점에서 측정하여 하중과 처짐값의 상호관계를 이용하여 포장하부 상태를 평가한다. 또한 측정된 값을 AASHTO의 AREA 방법을 사용하여 포장의 강성을 나타내는 상대강성반경과 지지력계수를 역산할 수 있다. 일반적으로 포장하부 상태평가 시 이동식 차량 FWD를 사용하는데 현재는 차량의 진행방향에 대해서만 포장하부 상태평가를 실시하고 있는 실정이다. 하지만 동일 지점을 차량 진행방향의 반대 방향으로 포장하부를 평가할 경우 동일 지점이라 하더라도 처짐값 측정기의 위치가 달라지고, 이에 따라 상대강성반경과 지지력계수의 차이가 FWD의 측정 방향에 따라 발생하게 된다. 하지만 FWD를 양방향으로 분석하는 기법은 없으며 방향에 따른 포장하부상태의 차이가 존재함에도 불구하고 이에 대한 명확한 지침이 또한 없는 상태이다. 따라서 본 논문에서는 FWD의 진행방향에 따른 포장하부 상태를 평가하였다. 이를 위해 유한요소해석 프로그램인 ABAQUS를 사용하여 하중에 따른 처짐값을 양방향에 대해 측정하였고, 측정된 값을 사용하여 방향에 따른 상대강성반경과 지지력계수의 차이를 분석하였다. 또한 포장하부의 지지력계수 변화에 따른 상대강성반경의 변화를 양방향에 대하여 분석하였고, 이어 포장하부에 공동을 모사하여 공동의 크기와 지지력계수의 변화에 따른 상대강성반경의 변화를 분석하였다.
아스팔트 콘크리트 포장의 주요 파손 형태는 균열과 변형으로 나타나며, 균열은 다시 피로균열, 저온균열, 종방향 균열 및 시공이음부 균열로 구분할 수 있다. 이러한 균열을 통해 포장층으로 수분 유입이 가능하며, 포트홀과 같은 추가적인 포장 파손을 발생시키거나 균열의 진행 속도를 가속화 시킬 수 있다. 따라서 도로 포장의 유지관리 측면에서 적절한 시점에 균열의 유지보수를 수행한다면, 전단면 보수를 수행하지 않고도 포장의 수명을 연장 시킬 수 있다. 균열 보수 방법으로 아스팔트 바인더 또는 고무 계열의 재료를 사용하여 보수를 수행하지만 이러한 보수 재료들은 가열을 통한 작업 속도 및 소규모 균열에 대한 경제성이 낮다는 단점이 있다. 따라서 본 연구에서는 폴리머 개질 아스팔트 계열인 우레탄 개질 아스팔트 바인더를 통해 균열 보수를 상온에서 수행할 수 있는 재료를 개발하고자 도로 현장의 균열 파손부에 균열 보수 시험 시공을 수행하였다. 균열 보수는 서울과 경기도 수원 지역에 각 1개소씩 2개소에 대하여 2013년 4월에 시공하였으며, 7개월 공용 후 현장 점검 결과 일부 균열 실링 보수 부위에서 균열이 발생한 것을 확인 할 수 있었다. 현장에서 관찰된 실링 보수 재료의 균열은 우레탄 개질 아스팔트 바인더의 건조 수축보다 동절기 아스팔트 콘크리트 포장 표층의 수축에 의한 것으로 사료되며, 향후 온도 변화에 따른 수축 팽창에 관련된 성능 개선 및 현장 시공을 통해 추적조사를 수행 할 계획이다.
최근 도심지와 산간지역에 설치되는 도로터널의 경우 터널개소의 증가와 장대화로 화재 사고가 점차 증가되고 있어 터널의 방재시설 강화가 요구되고 있다. 하지만 터널화재 발생시 대규모 인명피해가 발생될 수 있는 연기질식사 방지를 위한 연구는 부족한 실정이다. 본 연구에서는 화재발생시 연기확산을 차단하여 질식사 최소화 및 대피시간을 확보 할 수 있는 에어커튼 시스템을 개발하였다. 에어커튼 시스템은 방재설계 사례를 기준으로 시뮬레이션(CFD)을 통한 최적화 방안(분사각도, 분사량 등)을 도출하였으며, 실내 Lab Test 및 실제 도로터널서 화재실험을 실시한 결과 차연성능을 발휘하였다. 이론적/실험적 검증을 통한 에어커튼 시스템 도입을 통하여 도로터널의 인명피해를 최소화 할 수 있는 새로운 방재시설로 발전되길 기대한다.
본 연구에서는 박층 포장용 다층(Multiple layer) 에폭시 폴리머 콘크리트의 적용 가능성을 검토하기 위하여 국내에서 개발된 에폭시수지에 대한 실내실험을 통해 물리적 특성 평가를 수행하였고, 시공성 및 초기 공용성 평가를 위한 시험시공을 수행하였다. 실내실험으로 강도 특성을 평가하기 위하여 압축강도, 휨강도, 인장강도, 부착강도 시험을 수행하였으며 내구 특성 평가를 위하여 염소이온침투시험, Thermal Compatibility 시험을 실시하였다. 압축강도 시험결과 40MPa 이상으로 ACI(American Concrete Institute)의 폴리머 콘크리트 기준값보다 큰 값을 나타냈으며 휨강도 시험결과는 20MPa 이상으로 기준을 만족하였다. 인장강도 시험결과 15MPa의 강도값과 60%이상의 신장율이 측정되었고, 콘크리트포장면과의 부착강도 시험결과는 2.2MPa 값을 나타내어 국제기준을 만족하는 것으로 확인되었다. 염분침투저항성 시험결과는 측정값이 0Coulomb으로 수밀성이 뛰어난 것으로 나타나 제설제 등의 염화물에 대한 저항성이 클 것으로 판단된다. Thermal compatibility 시험 후 콘크리트와 에폭시 포장층의 접착면을 살펴본 결과 균열이 발견되지 않아 콘크리트포장과 에폭시 포장층의 열팽창계수 차이로 인한 접착은 문제가 없을 것으로 판단된다. 현장 시험시공 결과 우수한 시공성과 초기 공용성을 나타내어 실용화 가능성을 확인하였다. 따라서 국내 토공부 포장과 교면포장 적용시 포장 공용성과 내구성이 크게 향상 될 것으로 기대된다.
본 연구는 산업부산물을 아스팔트 혼합물 포장에 활용하고 천연골재를 대체하기 위한 연구로써 전기로 산화 슬래그를 이용한 아스팔트 혼합물의 물리적 성능과 내구성능을 분석하였으며, 현장 적용성을 분석하기 위하여 시험시공을 실시하였다. 아스팔트 혼합물의 내구성능을 평가하기 위해 아스팔트 혼합물의 최적 배합을 도출하여 평가하였다. 마샬안정도 등 실내시험결과 전기로 산화 슬래그 혼합물이 일반 혼합물보다 높은 강도를 나타내었다. 수분 민감도 실험에서도 일반 혼합물과 동등한 저항성을 나타냈다.시험시공을 통한 현장 적용성은 기존 천연골재 아스팔트 혼합물과 동일하였으며, 미끄럼저항성능이 더 우수한 것으로 확인되었다.
본 논문은 제철소의 제강과정에서 발생하는 부산물의 아스팔트 콘크리트 적용성을 평가하기 위한 실험 논문으로 천연 잔골재의 치환을 통한 실내 내구성능을 평가하였다. 실험에 적용된 제강 슬래그는 풍쇄 시스템으로 생산되어 형상이 구형을 나타내고 있다. 구형의 제강 슬래그를 기존 배합의 골재와 일정부분 치환함에 따라서 혼합성능, 아스팔트 함량, 실내 내구성능에 변화를 분석하였다. 분석결과, 구상의 제강슬래그의 친환율이 증가함에 따라서 아스팔트의 혼합성능은 향상되었으며, 이와 동반하여 최적의 아스팔트 함량도 감소하게되었다.
지구온난화로 인한 재앙을 방지하기 위하여 온실가스 배출을 감축하려는 노력은 지속적으로 추진되어 왔다. 최근에는 이미 배출된 이산화탄소를 포집하고 격리하여 온실가스를 감축하려는 방안도 활발히 연구 되고 있는 실정이다. 이산화탄소의 격리 방법 중 이산화탄소를 지반 내에 영구히 저장하는 방안이 제안되어 연구되고 있다. 이산화탄소의 차폐성능이 확인된 지반에 이산화탄소를 주입하기 위하여 주입공을 건설하여야 한다. 일반적으로 이산화탄소 주입공은 대심도공내에 강재 케이싱을 삽입 하고 그 주위를 환체 시멘트를 이용하여 차폐하지만, 주입공 주위의 환체 시멘트는 저장된 이산화탄소의 누출 경로가 될 가능성이 매우 높다고 알려져 있다. 본 연구에서는 이산화탄소의 지반 내 격리를 위한 주입공의 내구성과 차폐성능 향상을 위한 환체 시멘트의 개질개선을 위한 기초적인 연구로 고온고압 하에서 양생된 환체 시멘트의 미세구조 특성을 분석하고자 한다. 유정용으로도 사용되는 Type G 시멘트를 대심도 지반상태인 고온고압 (80 °C, 10 MPa) 상태에서 28일간 양생하였다. 이를 위하여 고온고압의 양생환경을 구현하기 위한 실험장치가 개발되었다. 고압의 질소가스를 투입하여 압력을 높였으며, 히팅 자켓을 이용하여 양생 온도를 유지하였다. 다양한 미세구조 분석 장치를 사용하여 고온고압에서 양생된 시멘트의 미세구조의 구성성분과 기계적 성질을 파악하였다.
장대레일은 200m~300m 이상에 길이를 갖는 선로를 의미하며 열차진동이 저감되고 무진동, 쾌속운행으로 좋은 승차감을 제공하여 서비스 향상에 기여할 뿐 아니라, 궤도보수주기 연장으로 보수비절감, 궤도재료 절약 등으로 철도경영 합리화에 크게 이바지 하고 있다. 이러한 장대레일의 효율성과 용이성으로 인하여 현재 전국 선로 중 55%가 부설되어 있으며 매년 장대레일의 설치 비율이 증가되고 있다. 장대레일에 설치 즉, 설정방법은 규정된 중위온도 내에서 설치하는 중위온도법을 기준으로 시행되고 있는 실정이며, 장대레일에 나타나는 문제점인 신축과 좌굴 현상은 레일온도 상승으로 인한 축압력 및 횡압력에 증가로 인하여 야기된다. 또한, 온도에 따른 열차 운전 규정에서는 고속선과 일반선로에 따라서 레일온도 범위에 따른 열차운전 최고속도 제한 및 운행중지와 같은 규정이 제시되어 있다. 이처럼, 장대레일 설정 및 운행에 있어서 발생할 수 있는 위험은 모두 온도와 연관되어 나타나고 있는 실정이다. 또한, 최근 지구온난화 현상으로 인한 이상기온에 출현 횟수가 증가하고 대기 온도상승하고 있음이 여러 연구 결과로 제시되고 있으며 국가적으로 미래 기후변화에 따른 온도 변화를 예측하고 대비책을 강구하고 있다.이에 본 연구에서는 미래 온도 변화로 인하여 장대레일에 온도 변화량을 파악하고 장대레일의 온도변화로 인하여 발생할 수 있는 위험성을 장대레일 재설정 규정과 열차 운전 규정을 바탕으로 미래 장대레일에 위험성을 살펴보고자 한다. 이에 본 연구에서는 익산시에서 측정된 대기온도와 레일온도를 통하여 대기-레일온도 관계를 규명하고 기상청에서 제공하는 2011~2100년 기간에 대한 미래 기후변화 시나리오를 이용하여 미래 레일온도를 산출함으로써 미래 레일온도에 따른 장대레일의 취약성을 평가해 보고자 한다. 본 연구결과는 온도상승에 따른 열차운전 규제 규정을 통하여 미래에 발생되어지는 열차운전 규제의 횟수 및 재설정 수행 횟수를 산출해 봄으로써 현행 장대레일 재설정시 규정과 온도상승에 따른 열차운전 규제 규정의 취약성을 평가하고 미래 기후변화에 따른 적응 방안을 강구해 볼 수 있을 것으로 판단된다.
현재 전 세계적으로 기후변화에 기인한 이상기후에 따른 기상재해가 과거에 경험하지 못했던 대규모로 빈번하게 발생하고 있으며, 기후변화로 인한 집중호우·폭염·가뭄·폭설·태풍 등 이상기후의 발생빈도 및 규모가 전 지구적으로 급격하게 증가하는 추세이다. 이러한 이상기후 및 기후변화로 인해서 극치강수량의 평균과 분산이 과거에 비해 증가하는 경향성이 실제 강수자료로부터 나타나고 있다. 따라서 이러한 극치강수량의 평균 및 분산에서 나타나는 변동성을 빈도해석 시에 고려할 필요가 있으나 기존 정상성 빈도해석 시에는 과거의 통계적 모멘트가 미래에도 동일하게 유지된다는 정상성 가정을 기본으로 하고 있기 때문에 경향성 및 주기성으로 대표되는 비정상성을 원천적으로 고려할 수 없는 문제점이 존재한다. 우리나라의 경우 철도기상사고를 발생시키는 주요 기상현상은 강우, 폭설, 낙뢰, 강풍이 대부분이며, 가장 많은 발생빈도를 보여주는 기상현상은 강우현상으로 약 200회 발생하여 철도사고 전체의 49.7%를 차지하고 있다. 이에 대한 문제점을 분석하고자 본 연구에서는 최근 여름철 집중호우 및 태풍 등으로 인한 강우현상에 대하여 미래목표연도의 연최대 강수량를 추정하고, 목표연도의 확률강우량을 추정하기 위한 방안으로서 누적평균 강우자료와 이동평균 강우자료를 이용한 비정상성 빈도해석기법을 제안하고자 한다. 자료계열에 나타나는 비정상성의 영향만을 고립시키기 위해서 확률분포함수는 Gumbel 분포함수를 적용하였고, 매개변수 추정시 최우도법을 사용하였으며 전국 9개 주요역이 존재하는 지역을 대상으로 철도선로 배수시설의 확률강우량을 추정하여 비교·분석하였다.
장대레일은 궤도와 교량의 상호작용에 의해 부가축력 및 변위가 발생되고 이는 장대레일의 좌굴 및 파단 등의 안정성 문제를 발생시킬 수 있다. UIC Code 774-3R 및 철도설계지침 등의 국내외 설계기준에서는 레일의 부가축력에 대한 해석절차와 검토규정 제시하고 있다. 기존의 하중분리해석은 하중 재하 단계에 따른 궤도 종방향 저항력의 변화를 고려하지 못하며 또한 비선형 거동을 보이는 궤도에 중첩의 원리를 허용함에 따라 과다한 레일 응력이 산출되어 비경제적 설계를 하게 된다. 따라서 본 논문에서는 슬래브 궤도에 탄성 방진장치가 설치된 플로팅 슬래브 궤도 에 대하여 유한요소해석 프로그램인 ABAQUS의 Model Change기법을 이용한 하중 단계별 종방향 저항력 변화 및 궤도의 비선형성을 고려하는 완전한 해석방법을 수행하였다. 해석결과로부터 해석법에 따른 플로팅 슬래브 궤도의 거동 변화를 비교하고 UIC Code 774-3R에서 제시한 레일의 최대 부가 허용응력과의 비교를 통한 플로팅 슬래브의 최대 길이를 산정하였다.
본 연구는 산림 내 주요 시설물 주변에 자생하는 고추나무, 생강나무, 싸리나무, 산초나무, 옻나무의 잎 5종을 대상으로 관목류의 연소특성을 분석하고자 착화특성과 전파특성을 실험 한 결과, 발화온도의 경우 고추나무 잎(214℃)이 가장 낮아 발화위험성이 가장 높은 것으로 나타났으며, 착화시간 또한 고추나무 잎이 3초로 가장 빠르게 나타났다. 화염유지시간의 경우 옷나무 잎(286초)이 가장 긴 것으로 나타났다. 또한, 전파특성 실험결과 고추나무 잎이 총열방출량(63.9MJ/m2)과 평균열방출율(34.5KW/m2)이 가장 높은 것으로 측정되었고, 최대열방출량은 산초나무 잎(102.1KW/m2)이 가장 높았다. 또한, 연료별 탄소배출량 분석 결과 평균CO2방출량이 가장 큰 수종은 옻나무 잎(1.15kg/kg)이며, 평균CO2방출량이 가장 큰 수종은 생강나무 잎(0.082kg/kg)으로 나타났다.
최근 언론을 통하여 백두산 화산분화에 대한 위험성이 보고되고 있으며, 이에 대응하기 위하여 백두산 화산 대응 기술 사업단이 소방방재청의 지원으로 출범 하였다. 백두산 화산은 중국과 북한의 국경에 위치하여 한반도까지 약 500 km 떨어져 있지만 백두산 화산이 대규모로 분출하는 경우 화산재가 남하하여 대한민국에 영향을 미칠 수 있다. 화산재에 의한 피해의 예로 2010년 아이슬랜드 Eyjafjallajökull 화산 폭발 시 대기에 분산되 화산재로 인하여 대규모 항공 장애가 발생하여 천문학적인 피해가 있었다. 이러한 물질적 피해 외에 1980년 미국의 St. Helens 폭발 당시 화산재에 의하여 여러 건강 문제가 제기 되었다. 따라서 백두산 화산의 대규모 분화에 대한 대비 및 대처가 필요하다. 앞서 설명하였듯이, 백두산 화산의 대규모 분화에 대한 관심이 높아지고 있는 시점에서, 화산 분화로 발생되는 화산재가 인체 건강에 어떠한 피해를 발생시키는 가에 대한 객관적이고 과학적인 연구가 필요하다.본 연구에서는 화산재에 의하여 발생 가능한 호흡기 질환에 초점을 맞추어 연구를 수행하였다. 먼저 화산재와 호흡기 질환과의 관계를 기존 연구 자료를 분석하여 파악하고 이를 바탕으로 백두산 화산 폭발 시 사용 가능할 것으로 기대되는 관리 기준에 관한 연구를 수행하였다.
본 연구는 화재, 구조, 구급 등의 응급상황 속에서 국민의 소중한 생명과 재산을 지키기 위해 현장 활동에 임하는 소방공무원들의 직무에 대한 만족도를 조사하고, 이를 개선 또는 향상시켜 질 좋은 소방서비스를 통해 ‘안전 한국’에 더욱 가까이 다가가는데 그 목적이 있다. 이러한 연구의 목적을 달성하고자, 먼저 직무와 직무만족에 대한 정의를 내리고, 소방공무원의 직무만족이 ‘국민의 안전’이라는 소방조직의 목표 달성에 어떠한 영향을 미치는지 조직효과성과의 관계를 문헌연구를 통해 분석하고 이에 대하여 ‘직무만족은 조직효과성에 직·간접적으로 긍정적 영향을 미칠 것이다’라는 이론적 토대를 마련하였다. 그리고 직무만족을 종속변수로 직무만족에 영향을 미치는 직무요인들을 독립변수로 하는 설문조사의 기본적 설계를 위한 연구모형을 설정하고 연령, 직위, 근무경력 등의 인구통계학적 특성을 고려하였다. 또한, 연구모형 내 독립변수인 소방공무원의 직무만족에 영향을 미치는 직무요인들을 찾기 위하여 선행된 연구들을 조사하였는데, 이 중 Gilmer가 제시한 7가지 직무요인을 소방공무원의 실정에 맞게 자긍심, 금전적인 보상, 근무환경, 직무여건, 소방행정에 대한 이해의 5가지로 재구성하고, 재구성된 직무요인들을 바탕으로 설문조사를 수행하였다.