우리나라는 기후변화로 인해 강우의 변동성이 커지며 강우관측시스템이 지역적으로 불균형하고 시험유역을 제외한 대부분의 저수지 상류 유역이 미계측유역인 관계로 강우량, 유출량, 증발량 및 신뢰성 있는 관측 유입량이 절대적으로 부족하다. 이로 인해 유역의 특성을 반영한 강우-유출 관계를 유도하는데 문제점이 초래되고 있으며, 댐 및 저수지의 계획 및 설계 운영에 필요한 유입량 예측이 어려운 실정이다.
본 연구는 미계측유역 유입량의 정량적ㆍ정성적 분석방안을 수립하기 위해서 기존에 개발된 모형 IHACRES 모형, Sacramento 모형 및 Tank 모형을 이용하여 저수지의 유입량을 산정하고 각 모형의 매개변수를 지역화 하고자 한다. 지역화를 위해서 대상유역의 지형특성인자인 유역면적, 유로연장, 유역평균표고, 유역평균경사 및 단일형상계수와 회귀 분석하여 지역화시키고, 지역화를 통하여 산정된 매개변수를 각 모형에 적용하여 대상유역의 유입량을 재산정하여 처음에 산정한 유입량 값과 비교하여 각 모형의 지역화 가능성을 비교하였다.
본 연구에서는 국내기상자료를 대상으로 극한기상현상의 발생원인을 단일재해와 복합재해로 발생하는 시기로 구분하여 특성을 비교 및 분석하여 이를 바탕으로 복합 재해에 대한 정의 및 특성 분석을 수행하였다. 30년 이상의 자료를 보유한 기상청 산하 기상관측소를 대상으로 전기간 자료를 구축하고 극한기상현상의 발생원인을 강우-강풍, 강설-강풍 등 복합재해로 발생하는 시기의 자료와 단일재해로 발생하는 시기로 구분하여 지속시간별 연최대치계열을 추출하였다.
복합재해(강우-강풍, 적설-강풍)에 따른 기본하중도 산정을 위해 복합재해 분석을 위한 통계기법으로 다변량 분석기법인 Copula 분포를 적용하였다.
Copula 분포 적용을 위해 과거 기상 관측자료를 이용하여 목적으로 하는 기상변수에 대한 지속시간별 연최대치계열(강우, 적설)을 산정하고 연최대치계열이 발생할 경우의 평균풍속을 산정한다.
분석대상 복합재해 요소에 대한 최적 주변분포(Marginal Distribution)와 Copula 분포를 적합도 분석을 통하여 선정하고 조건부 Copula 개념을 적용하여 임계풍속(연최대치계열이 발생할 경우의 평균풍속과 표준편차의 합)이 발생할 경우의 지속시간별 재현기간별 하중도를 산정한다.
우리나라 수해 통계정보를 얻을 수 있는 자료로는 재해연보로서, 시설물 복구비 지원 위주의 단순 통계 집적 관리 목적으로 작성되어 방재정책 수립시 필요한 기본정보로서의 수준이 미흡하다. 반복되는 재해에 따른 피해액과 복구비 등의 국가적 손실을 최소화하기 위해서는 직접피해뿐 아니라 실제 체감할 수 있는 사회·경제 전반에 걸친 재해 정보를 통한 홍수피해 예측으로 타당한 방재 대책을 수립할 수 있는 의사결정 정보가 필요하다.
따라서, 본 연구에서는 수해 통계정보의 현황을 파악할 수 있는 수준평가 방안을 마련하였다. 방재 선진국의 홍수피해 산정을 위한 피해대상항목 및 피해액 도출방법 등의 통계 정보조사 및 브레인스토밍을 통해서 평가지표는 크게 피해조사 항목 적정성과 피해 산정 방법의 정밀도로 구분하고, 세부지표로는 직·간접 피해 정보의 적정성, 공간단위 정밀도, 직·간접피해 산정의 정밀도 등으로 구성하여 국내 수해통계 정보에 적용하였다.
향후 동일한 수준평가 항목을 일본, 미국 등 국외 수해통계 정보에 적용하여 수준을 평가하고, 국내의 수준과 비교분석을 통하여 국내 수해통계의 문제점에 대한 개선방안이 도출된다면 수해정보의 정확도 및 활용성 향상으로 효율적인 방재정책 수립이 가능할 것으로 사료된다.
본 연구에서는 국내기상자료를 대상으로 극한기상현상의 발생원인을 단일재해와 복합재해로 발생하는 시기로 구분하여 특성을 비교 및 분석하여 이를 바탕으로 복합 재해에 대한 정의 및 특성 분석을 수행하였다. 30년 이상의 자료를 보유한 기상청 산하 기상관측소를 대상으로 전기간 자료를 구축하고 극한기상 현상의 발생원인을 강우-강풍, 강설-강풍 등 복합재해로 발생하는 시기의 자료와 단일재해로 발생하는 시기로 구분하여 지속시간별 연최대치계열을 추출하였다.
일반적으로 지표를 이용하여 지수를 계산하는 경우 반드시 표준화(normalization), 가중치부여(weighting), 집계(aggregation) 등의 방법이 필요하다. 지표들의 평가 기준 및 형태 등이 상이하므로 이를 평가할 수 있도록 표준화 과정을 거쳐야 한다. 본 연구에서는 Z점수 방법을 사용하여 적용하였다.
최근 2003년~2013년 11년간의 기상자료에 대한 Z 점수값의 상위 10%이내 해당되는 기상관측소의 지역에 대해서 분석하였다. 분석된 결과값을 이용하여 강우, 강풍, 적설이 각 지역별로 나타나는 표준화 점수를 통해 기후변화 영향을 받은 정도를 분석할 수 있다.
최근 강우와 토지이용 특성의 변화로 도시지역의 재해위험은 크게 악화되고 있다. 이에 본 연구에서는 기성시가지 유역에서 내수침수 방지대책의 효과적이고 맞춤화된 적용을 위한 지역구분 방법에 대해 비교 분석하였다. 지역구분의 주된 목적은 지형, 하천, 토지이용 특성 등의 객관적 자료만으로 유사한 특성의 공간영역을 식별하는 것이다. 궁극적으로는 대상지역을 수리∙수문학적 특성에 따른 유형별로 구분하고, 각 지역에 적합한 대책을 적용하기 위함이다. 본 연구에서는 침수재해 위험도를 고려하여 대상유역을 크게 침수위험지역과 빗물유출지역으로 구분한다. 빗물유출지역은 다시 유출억제지역(또는 비시가화지역)과 홍수지체지역(또는 시가화지역)으로 세분화한다. 침수위험지역의 구분 기준은 과거 침수피해이력, 모의를 통한 침수피해 예상지역, 인근 하천과의 관계(계획홍수위, 하상고 등), 지형특성인자(습윤지수 등), 관련제도에서 지정된 지역(풍수해저감종합계획 등) 등이 있으며, 빗물유출지역의 유출억제지역과 홍수지체지역 구분은 시가화 정도(토지이용 특성 등), 토양의 포화 여부, 우수의 흐름 상태 등을 이용할 수 있다. 사례분석 대상지역에의 적용 결과, 침수위험지역은 지형특성인자, 빗물유출지역은 토지이용 특성을 이용하는 것이 대체로 적절함을 알 수 있었다. 다만, 침수위험지역에 대한 구분은 침수피해의 원인이 매우 다양한 형태로 나타남으로 피해이력, 관련제도에서 지정된 지역 등과의 충분한 검토가 필요할 것으로 보인다. 이상과 같은 연구결과는 내배수 재해저감시설의 설치 및 배치를 위한 기초자료로써 활용될 수 있으며, 궁극적으로는 시가지유역 단위에서보다 전방위적이고 맞춤화된 침수방지대책을 마련하는데 기여할 것으로 기대된다.
강우-유출 모형을 이용하여 직접유출량을 산정할 경우, 유역의 유효우량을 산정하기 위하여 NRCS-CN 방법을 주로 사용한다. 유출곡선지수(CN)을 이용하여 유역의 유효우량을 산정하는 대표적인 방법은 유역의 평균 CN값을 산정하고 유효우량을 산정하는 방법으로 가중평균 CN 방법이라 한다. 하지만, 이 방법은 유효우량을 과다 또는 과소 산정하게 된다. 본 연구에서는 NRCS-CN 방법을 통하여 우리나라 유역 특성에 적절한 유효우량 산정방법을 제시하기 위하여 유역의 경사효과를 고려한 CN값을 적용하여 유효우량을 산정하였으며, 유역의 유효우량을 산정하기 위한 2가지의 가중평균방법(가중평균 CN 방법, 가중평균 유효우량 방법)을 적용하였다. 강우-유출의 관측사상에 대한 자료를 이용하여 관측 직접유출량을 추정하고, 통계학적 오차분석 및 Skill Score 분석을 통하여 여러 가지 수문조건 및 지형특성에 대한 유출곡선지수 및 유효우량을 비교·분석하였다. 본 연구 결과, 경사도를 고려하여 CN값을 보정할 경우 유효우량이 전반적으로 크게 산정되었으며, 가중평균 유효우량 방법은 가중평균 CN 방법보다 유역의 유효우량을 전반적으로 크게 산정하는 것을 확인하였다. 통계학적 오차 분석을 수행한 결과, 전체적으로 수문조건 및 지형특성을 고려하였을 경우 경사도로 보정한 CN값을 적용한 가중평균 유효우량 산정방법이 관측 직접유출량과 높은 정확성을 가지는 것으로 나타났다. 또한, Skill Score 분석에 의하면, 유역경사로 보정한 CN값을 이용한 가중평균 유효우량 방법이 기존의 방법(가중평균 CN 방법)에 비해 상대적으로 관측값에 가까운 값을 제공하는 것으로 나타났다.
단기간에 발생하는 홍수와 달리 가뭄은 긴 시간 동안 큰 피해를 발생시키기 때문에 가뭄을 효과적인 예측하는 것은 매우 중요하다. 현재까지 제안된 여러 가뭄지수들은 사전에 정의된 등급을 이용하기 때문에 대상자료 자체에 내재된 불확실성을 고려하지 못하고 있다. 본 연구에서는 월 강우량 자료를 이용하여 내재되어 있는 불확실성을 고려할 수 있는 은닉 마코프 모형(Hidden Markov Model, HMM)을 이용하여 기상학적 가뭄을 확률론적으로 평가하였다. 기상청에서 제공하는 1973년부터 2012년까지의 일 강우량 자료와 기후변화정보센터(Climate Change Information Center)에서 제공하는 2013년부터 2100년까지의 기후변화 시나리오(RCP 8.5) 기반 월강우량 자료를 대상으로 총 128년간의 강우량 자료에 HMM에 적용하고 가뭄현상을 분석하였다. 본 연구에서 제안된 은닉 마코프 가뭄지수(Hidden Markov based Drought Index, HMDI)는 자료에 내재된 불확실성을 이용하여 가뭄의 상태를 분류할 수 있으며, 이는 SPI와 같은 기존의 가뭄지수와 달리 특정 시점에서 각 은닉상태들이 나타날 확률로 표현되었다. 또한 HMDI를 이용하여 미래 기상학적 가뭄의 계절·기간별 발생특성과 가뭄위험도를 분석하였다.
본 연구에서는 통합홍수위험관리 측면에서 지역별 홍수방어대책 우선순위 선정을 위해, 홍수위험이 상대적으로 높은 홍수위험지구를 선정할 수 있는 홍수위험도 분석방안 수립 및 적용에 대한 연구를 수행하였다. 홍수위험도를 평가하기 위해 우리나라의 홍수 피해에 영향을 미치는 요인들을 P-S-R (Pressure-State-Response) 구성 체계에 따라 분류하여 3개의 치수특성 평가지표인 압력지표, 현상지표, 그리고 대책지표를 대표하는 총 12개 세부평가지표들을 선정하고, GIS를 이용하여 전국 수자원단위지도 표준유역 공간단위의 자료를 구축하였다. 12개 세부평가지표 항목들을 종합한 홍수위험도를 산정하기 위하여 지표평균법과 PROMETHEE방법을 각각 적용하여 홍수위험도를 분석하였고, 두 결과를 종합적으로 반영하여 최종 홍수위험도를 결정하였다. 홍수방어대책 수립시 우선순위 선정을 위하여 홍수위험도 상위 20%의 전국 163개 표준유역을 홍수위험지구로 선정하였는 바, 본 연구에서 선정된 홍수위험지구는 추후 현장조사 등 종합적인 검토를 통하여 최종 확정할 필요가 있다. 본 연구에서 제시한 홍수위험도 평가방법은 홍수의 원인, 피해 및 대응에 관한 역학관계의 결과로서, 홍수위험 관련 정보를 공간적으로 분석하여 정부 및 지자체의 홍수방재 관련 정책수립 등의 업무수행을 위한 보다 효과적인 의사결정에 도움을 줄 것으로 기대한다.
최근 공간정보 및 컴퓨터기술의 발달과 함께 시공간적인 토양침식의 프로세스를 구현할 수 있는 다양한 물리적 기반의 모델이 개발되고 있다. 비록 물리적 기반의 토양침식모델이 다양한 지점에서 다양한 형태로 발생하고 있는 침식, 이송 및 퇴적에 관한 일련의 정보를 제공하지만, 파라메타, 모델의 구조 및 관측 자료의 불확실성 등으로 인하여 모델을 예측 혹은 특정 목적을 위하여 활용하는 경우에는 많은 어려움이 있다. 따라서 본 연구에서는 유역기반의 토양침식모델(CSEM)의 최적 파라메타의 추정 및 그 불확실성을 평가하기 위하여 자료동화기법 중의 하나인 파티클 필터를 적용하였다. 파티클 필터를 CSEM과 연계한 모형(CSEM-PF)은 비선형 시스템의 특성을 갖는 물리적 기반 모형인 CSEM의 파라메타를 추정하기 위하여 매 시간의 관측 유량 및 관측 유사량을 활용하여 각각의 가중치를 계산하고, 이를 바탕으로 필터링을 수행하여 유출량 및 유사량과 관련된 다양한 파라메타를 추정하였다. 또한 이를 통하여 각 파라메타에 대한 불확실성 뿐만 아니라, 시변성을 갖는 파라메타에 대한 특성을 고려할 수 있음을 확인하였다. CSEM-PF를 용담댐의 소유역을 대상으로 과거의 기록적인 3개의 태풍에 의하여 발생한 사상에 적용하여, 각 사상에 대한 최적의 파라메타를 추정하고, 그에 대한 불확실성 분석을 수행하였다.
본 연구에서는 홍수위험도 작성을 위한 낙동강 유역에서의 도달시간을 산정하였다. 현재 국내에서 제작되고 있는 홍수위험지도는 홍수범람범위 및 홍수심을 표출하는 것을 목적으로 하는 Flood Hazard Map이다. 최근 발생하고 있는 홍수피해는 태풍이나 국지성 호우에 의한 피해가 대부분으로 이를 대비하기 위해서는 실시간 홍수예보가 중요하며, 나아가서는 실시간 홍수위험도 예측이 필요한 실정이다. 특히 실시간 홍수예경보가 이루어지고 있는 대하천의 경우 4대강 살리기 사업으로 인해 보 설치 및 하천 준설 등으로 인해 하천환경이 변화되어 하천의 흐름특성이 변화되었다. 따라서 변화된 하천 단면의 적용 및 보 등의 내부구조물을 고려한 수리학적 분석을 통한 실시간 홍수예경보 및 홍수위험도 작성이 필요하다. 본 연구에서는 현재 제작되고 있는 Flood Hazard Map들이 홍수범람범위와 침수심의 제한된 정보만을 포함하고 있는 한계를 벗어나 다양한 범람 시나리오에 대한 불확실성을 고려한 홍수위험도를 작성하기 위한 요소 중 홍수파 도달시간을 산정하였다. 도달시간 산정을 위해 본 연구에서는 FLDWAV 모형을 사용하였으며 태풍 산바 사상을 통한 검증 후 가상 홍수 시나리오에 대한 낙동강 유역에서의 도달시간을 산정하였다. 또한, 4대강 살리기 사업으로 설치된 보의 영향을 분석하기 위해 보 설치 전·후를 비교하였다. 홍수에 대한 여러 가지 불확실성이 있겠지만 홍수 발생시 중요하게 고려되는 홍수심, 유속 등을 추가로 고려하여 이를 바탕으로 나아가 불확실성을 고려한 홍수위험도를 작성하고자 한다.
홍수량을 산정하여 홍수를 예측하는 것은 재해 예방과 피해 감소를 위해 매우 중요하다. 홍수 예측을 위해서는 정확한 유출량 분석이 필요하지만 우리나라의 유출량 자료는 매우 한정적이다. 유출량 정보를 보여주는 유량-지속시간 곡선은 미계측 유역 또는 수문학적 정보가 부족한 유역의 수문학적 예측을 위한 도구로써 사용할 수 있다. 확정론적 모형과 지역화 기법 등의 연구가 유량-지속시간 곡선의 추정을 위해 진행되었으나 까다로운 계산 과정과 복잡한 매개변수의 사용으로 인해 예측 효율이 떨어지는 실정이다. 본 연구에서는 계산과정이 간단한 공간보간법으로 확장역거리가중법(Extended Inverse Distance Weighting: EIDW)을 적용하였다. 먼저 계측 유역의 유량-지속시간 곡선을 작성하고, 작성된 유량-지속시간 곡선을 이용하여 미계측 유역의 유량백분율을 산정하였다. 이 기법은 기존의 역거리가중법(IDW)과 다르게 관측 지점의 지리적 요소뿐만 아니라 지형적 특성을 고려하는 것이 특징이다. 유출량에 영향을 주는 지형요소를 가중치 산정에 추가하기 위해 거리가중치, 유역면적가중치, 지형가중치를 혼합하여 총 3개의 모형이 사용되었다. 최적의 모형 선정을 위해 가중치의 주요 변수인 거리감쇠상수(C)와 예측 효율과의 관계를 비교하였다. 한강유역의 9개 지역을 대상으로 계측지점 중 일부를 미계측 지역으로 가정하여 EIDW 기법을 검증하였다. RMSE(Root Mean Square Error)를 바탕으로 예측의 정확성을 분석한 결과, EIDW 모형이 IDW와 크리깅 방법보다 적은 오차를 가지는 것으로 나타났다.
상수관망의 운영에 있어서 핵심적인 사항 중의 하나는 관망의 압력균등화이다. 관망의 압력균등화는 시간과 공간적으로 이루어져야 하며 이를 위한 대표적인 방법은 가압장을 설치하는 것이다. 가압장은 관말단에 잔류수압(Residual Pressure Head)이 부족할 것으로 예상될 경우 용수에 추가적인 에너지를 가하여 원활한 용수공급을 가능하게 하는 시설이다. 그러나 가압장에는 펌프를 사용하기 때문에 지속적인 운영비용이 발생하고 기계적인 고장에 취약한 단점을 가지고 있다. 이와 같은 가압장의 단점을 보완하기 위하여 배수관망내에 탱크(In-line Tank)를 설치하는 것이 대안이 될 수 있다. 탱크의 초기투자 비용은 가압장보다 크지만 유지비용이 적고, 고장에 따른 용수공급 중단이 될 가능성이 낮다. 또한, 관파괴에 의한 단수발생시 탱크 인접지역에 비상용수원으로 활용될 수 있다. 그러나 시설비나 부지 문제로 인하여 배수관망에 많은 수의 탱크를 설치하기는 어렵다. 이에 본 연구에서는 배수관망내 필요한 탱크의 개수에 따라 적정배치를 결정할 수 있는 방법론을 제시하였다. 즉, 예산이나 설치부지 등의 제한으로 설치가능한 탱크의 수가 결정되면 이를 최적으로 배치할 수 있는 방법론을 의미한다. 이를 위한 목적함수로 시공간적 관망내 압력 균등지표(Temporal and Spatial Pressure Evenness Index, TSPEI)를 제시하였다. TSPEI 산정은, 먼저 24시간의 Extended Period Simulation을 통하여 절점별로 압력의 일변동(일최대압력-일최소압력)을 산정하고, 두번째로 모든 절점의 압력 일변동을 합산하여 구한다. 이때 가능한 탱크 조합중 TSPEI가 가장 작은 조합이 최적조합이 된다. 제안된 방법을 샘플관망(Mays' network)을 대상으로 적용성을 검증하였다. 그 결과 설치 가능한 탱크의 수를 2개, 3개, 4개로 가정하여 각각의 경우에 대해 최적탱크조합을 산정하였으며, 각각의 탱크 조합에서 일관된 경향이 나타남을 확인하였다.
지상 강우자료의 공간 변동특성은 돌발홍수 예측의 정도를 결정짓는 중요한 부분이다. 이에 본 연구에서는 지상 강우관측망의 공간적 분포특성이 레이더 보정에 미치는 영향을 검토하였다. 지상 강우관측소의 공간적 분포와 레이더 강우의 보정은 최근린 지수와 G/R 비를 이용하였으며, 이를 평창강 유역에 적용하였다. 대상유역 내에는 총 23개의 강우관측소가 위치해 있으며, 이중 10개의 강우관측소를 무작위로 선택하였다. 이때 선택된 강우관측소 조합(총 1,144,066개)을 최근린 지수를 이용하여 공간분포가 가장 좋은 경우와 가장 왜곡된 경우로 구분하고, 각 경우에 대한 레이더 보정 결과를 비교하였다. 보정된 레이더 강우와 지상 강우관측소의 차이는 ME(Mean Error)와 RMSE(Root Mean Squared Error)를 이용하여 비교하였다.
그 결과 공간분포가 우수한 경우 ME와 RMSE가 공간분포가 왜곡된 경우에 비해 상대적으로 작게 분석됨을 확인하였다. 이는 레이더 강우보정에 있어 유역내의 관측소의 개수뿐만 아니라 유역내의 관측소의 공간분포 역시 중요한 요소임을 확인하였다. 즉, 유역내의 관측소의 개수가 많더라도 공간적으로 왜곡된 경우 적절한 레이더 보정이 힘들어 지는 것을 의미한다. 아울러 공간적으로 잘 분포된 강우관측망을 이용하여 레이더 강우를 보정할 경우 편의와 불확실성은 유역 내 전체 지상 강우관측소를 이용한 경우만큼이나 충분히 줄일 수 있을 것으로 판단된다. 그러나 본 연구에서는 대상 강우관측소의 개수를 10개소로 한정하여 분석한 결과로 현재로서는 몇 개의 강우관측소를 선택하였을 때 레이더 보정 있어 가장 유리한지는 파악하기 쉽지 않다.
일반적으로 레이더 보정시 유역 내 전체 강우관측소를 대상으로 하는데 유역내의 전 강우자료를 적용하는 게 과연 적절한 방법인지에 대해서는 추후 논의할 필요가 있다. 아울러 본 연구의 성과는 기상관측소의 제한된 여건 속에서 관측망의 효율적 운영을 통해 강우자료의 품질 향상과 더불어 홍수예경보 시스템의 질적 향상에 기여할 수 있을 거라 판단된다.
강수량 관측 자료에 기초한 유출해석모형을 기반으로 하는 수위기반 홍수예측시스템으로는 짧은 도달시간과 국지성 집중호우로 발생하는 중소하천의 홍수에 대처하기 위한 충분한 예경보 시간을 확보하기 어렵다. 본 연구에서는 홍수예보 선행시간을 확보하기 위해 강우정보만으로도 홍수예보가 가능한 수위노모그래프를 개발하였다. 홍수예보 기준을 경계, 대피의 2단계로 구분하여 기준홍수위를 산정하고 다양한 홍수사상을 반영하기 위해 가상 시나리오를 설정하여 강우조건별 강우량과 지속시간을 선정하였다. 또한 소하천 횡단면 자료와 Manning 공식을 이용하여 수위-유량 관계 곡선을 개발하고 소하천 유역면적비를 전이하여 강우-첨두유출곡선을 산정하였다. 가상 시나리오에 따른 강우정보와 홍수량을 이용하여 전남 나주시에 위치하고 있는 정광천과 소노동천을 대상으로 수위노모그래프를 개발하였다. 수위노모그래프를 기반으로 하는 홍수예보기법은 자연유역 중소하천의 홍수예보 방법으로 활용도가 높을 것으로 판단된다.
북한의 대규모 자연재난은 홍수와 태풍 그리고 집중호우로 인한 수해피해가 대부분이며 이러한 피해는 1990년대 중반부터 해마다 북한의 경제난을 악화시키고 있다. 특히, 식량난과 에너지난으로 인한 무분별한 국토개발 및 산림훼손으로 1995년부터 집중호우, 태풍 등의 수해피해에 상습적으로 시달리고 있다. 전문가들은 지난 15년간 북한의 홍수를 검토하여 홍수 초래 영향변수로 ‘강우집중도’와 ‘집중호우 지역’으로 판단하고 있으며, 홍수피해 가중 요인을 ‘발생시기’와 ‘피해규모’로 정하였다. 본 연구에서는 북한 홍수 모니터링 우선지역 선정을 위해 홍수 초래 영향변수인 ‘강우집중도’와 ‘집중호우 지역’은 우심지에 해당하는 지역의 월평균강우량의 크기와 일최대강우량, 집중호우 발생빈도가 큰 기상관측소 지점으로 선별하였고, 홍수피해 가중 요인인 ‘발생시기’와 ‘기반시설 피해정도’의 경우 집중호우 발생 빈도가 큰 개월과 북한의 주요 홍수피해 당시 피해보도를 기반으로 등급 점수를 부여하여 우선지역을 구분하였다. 홍수 초래 영향변수와 홍수피해 가중 요인으로 북한의 홍수 모니터링 우선지역을 행정구역별로 선정하면 홍수 초래 영향변수에 의한 모니터링 우선순위 지역은 강원도와 개성시이며, 홍수피해 가중 요인에 의한 모니터링 우선지역은 황해도, 평안남도, 강원도, 함경남도가 된다. 하지만, 피해규모의 경우 주요 피해가 발생한 행정구역의 피해를 통합하여 보도한 내용이므로 각 행정구역별 피해규모의 확인은 힘들기 때문에 모니터링 우선지역의 선정에 있어서는 홍수 초래 영향변수로 분석한 우선순위를 고려하고 홍수피해 가중 요인은 참고로 활용하는 것이 타당할 것이다.
최근 극심한 기후변화로 인하여 재해기상 현상의 발생 빈도와 강도가 증가하고 있다. 우리나라의 자연재해 피해는 대부분 극한 강수 현상과 연관되어 있기 때문에 미래 재해 피해를 줄이기 위해서는 기후변화로 인한 극한 강수 현상의 변화를 정확히 예측해야 한다. 이를 위하여 본 연구에서는 지역기후모델을 이용하여 생산한 한반도 상세 기후변화 시나리오의 미래 극한 강수 지수 변화를 분석하였다. 5개의 지역기후모델로 생산한 현재 25년 실험값과 RCP8.5 기후변화 시나리오 기반의 미래 25년 실험값을 비교해 STARDEX 극한 강수 지수의 변화를 산출하였다. 지역기후모델이 모의한 격자 강수값을 230개 시군구 단위로 2중 선형 내삽한 후, 각 단위의 STARDEX 극한 강수 지수를 계산하였다. 그 결과 기상청 HadGEM3-RA 모델을 제외한 4개의 지역기후모델이 남한지역의 미래 극한 강수가 현재보다 증가한다고 예측하였는데, 특히 한반도 남부 지역에서 증가폭이 크게 나타났다. 또한 중부 지방의 가뭄지속기간이 현재보다 더욱 길어질 것으로 모의되었다. 본 연구를 통하여 산출된 미래 극한 강수 지수의 변화가 남부 지방의 집중 호우와 중부 지방의 가뭄과 같은 풍수해 대책 수립에 중요한 기초 자료로 이용될 수 있을 것으로 기대된다.
본 연구에서는 VfloTM을 이용하여 북한의 미계측지역에 대한 매개변수 설정 및 일관적인 분포형 강우적용을 통해 실강우 특성을 반영한 침수분석 결과를 도출한다. 연구대상은 임진강 수계로 유역면적의 2/3가 한 지역에 포함이 되며 사실상 미계측지역으로 분류된다. 위 수계의 수문자료가 거의 없어 매개변수 보정 및 검정할 자료가 사실상 없으므로 분석하는 주체에 따라 강우-유출모형 구축에 있어 차이가 발생하므로 홍수량 산정 절차 및 매개변수 결정에 대한 표준화가 필요하다. 분포형 강우는 광덕산 레이더의 Long-ranged Radar(반경 480 ㎞)를 이용하여 회령, 선봉 및 일부 지역을 제외한 북한 수계 전역에 걸쳐 분포형 강우를 본 원에서 생산하고 있으며 분포형 모델을 이용하여 강우사상별 북한 지역의 침수현황을 도출하는 프로세스를 구축하였다. 또한, 기연구된 북한의 확률강우량도를 토대로 각 빈도별 침수현황을 도출하였으며 북한 내 발생하는 홍수에 대해 개략적인 침수현황 제시가 가능하다. 위 연구를 토대로 통일 대비 북한의 홍수 재난 현황 및 이에 대한 대처 자료로써 효용이 있을 것으로 판단이 되며 지속적인 모니터링을 통해 북한 재난 DB를 구축해 나갈 것이다.
본 연구에서는 북한의 발전(發電) 수자원 가능량을 조사하기 위해 포장수력 이론을 적용하였다. 발전수자원 가능량이라 함은 발전을 할 수 있는 수자원의 양을 뜻하며, 유역의 수자원을 효율적으로 사용할 수 있는 지점에 댐을 건설하기 위해 조사한다. 포장수력은 전원개발의 대상이되는 수력자원의 크기를 의미하며 수력에너지의 부존특성 개발의 방식 등을 감안하여 이론포장수력, 기술적 포장수력, 경제적 포장수력 등 3가지 유형으로 구분되나 본 연구에서는 북한의 자료의 한계로 인해 이론포장수력조사 방법에 대해서만 산정하였다. 이론포장수력이란 높은 곳에서 강하한 강수가 유역을 따라 해면까지 유하하는 데서 얻을 수 있다고 보는 유수의 잠재적 에너지로서 총 낙차와 강수량의 상승적 비례관계에 따라 산정한다. 북한의 압록강, 두만강 등 총 7개의 유역에 대해서 북한의 이론포장수력을 산정하였다. 이를 위해 북한의 27개의 강우관측소 자료를 이용해 유역별 강수량을 산정하였고 북한의 고도별 면적 강수량을 산정하기 위해 MODIS에서 제공하고 있는 Aster Gdem에서 북한 지역의 DEM을 추출하여 본 연구에 이용하였다. 이론포장수력 산정 결과 압록강유역이 7562.2×10³KW으로 가장 높았으며, 상대적으로 높은 표고에 위치한 압록강과 두만강에서 높게 산정되었다. 북한의 발전 수자원 가능량을 조사함으로써 유역의 수자원을 효율적으로 사용할 수 있는 지점을 파악할 수 있으며, 수자원의 장래 개발 가능성을 파악하고 그 개발을 촉진시키는 데에 지침이 되는 기본 자료로서 활용이 가능할 것으로 예상 된다.
가뭄은 홍수, 산사태, 강풍 피해 등 단기간에 집중적으로 영향을 끼치는 자연재해와 달리 장기간에 걸쳐 느린 속도로 영향을 미치게 된다. 광역적인 피해를 주는 가뭄은 시점과 종점을 정확히 파악하기 어렵고 진행방향을 예측하는 데에 한계점을 갖기 때문에 가뭄의 심도를 정량화 할 수 있는 연구가 진행되고 있다. 그리하여 본 연구에서는 광역적 관측이 가능한 인공위성 자료를 활용하여 가뭄 지수를 산정하였으며 이를 통해 2014년 우리나라에서 발생한 가뭄 상황을 평가 하였다.
미항공우주국(NASA)의 다중분광센서인 MODerate resolution Imaging Spectroradiometer(MODIS)의 다양한 산출물을 통해 수문기상인자 기반의 가뭄지수인 Evaporative Stress Index(ESI)를 산정하였으며 이를 지점기반의 가뭄지수인 표준강수지수(Standardized Precipitation Index, SPI), 파머가뭄지수(Palmer Drought Severity Index, PDSI)와 강우량과의 시계열 비교를 통해 ESI의 국내 적용성 및 가뭄 상황을 분석하고자 하였다.
이는 인공위성 기반의 산정된 가뭄 지수를 통한 지역적인 가뭄 분석을 통해 지점 기반의 가뭄 지수가 지닌 한계점을 극복하고 각 지역에 따라 차별화된 가뭄 방재 대책을 세우는 데에 도움을 줄 수 있을 것이다.
본 연구에서는 장치형 시설의 하나인 상향류식 여과시스템을 활용하여 도시유역에서 발생하는 초기강우유출수의 처리성능을 평가하였다. 해당유역은 면적이 80ha인 구시가지로서 합류식과 분류식이 혼재하는 관망형태를 가지고 있다. 유역의 포장율이 높고 거의 전량 하수관거를 통해 유출되어 유출시간이 매우 짧아 강우개시 후 단시간내에 초기강우수의 유출이 종료되는 특징이 있다. 설치된 시설은 4000m3/hr규모이고 상향류식 여과시설이며 제외지의 지하에 설치되어 있다. 여과부는 펠렛형 섬모상여재가 충진되어 오염물질 중 미세한 오염물질의 제거효율을 높이도록 하였고, 매 강우 종료 후 역세척을 수행하여 여재층에 억류된 오염물질이 세척되어 다음 강우를 대비할 수 있도록 운전되었다.
시설로 유입되는 강우유출수의 유출특성과 여과시설을 통한 처리효율을 검증하기 위해서 강우개시직후부터 초기우수유출이 종료되는 시점까지 일정 간격으로 유입수와 처리수를 채수하여 수질을 분석하였다. 강우유출수의 유량이나 농도는 강우강도와 선행미강우일수에 따라 매우 다양하게 나타났으나, 초기강우유출은 대체로 1시간이내에 종료되는 것으로 나타났다. 여과형 시설을 통한 오염물질의 제거효율은 원수의 농도에 따라 다양하게 나타났으나 SS의 경우 40mg/L까지 처리 가능한 것으로 나타났다. 초기강우유출이 종료된 후에는 강우유출수의 농도가 낮아져서 별도의 처리없이 활용가능한 수준인 것으로 나타났다. 시설의 효율적인 운전을 위해서는 향후 꾸준한 유출특성분석과 처리성능분석을 통하여 적정 역세척방법과 적정 운전시간 등을 도출할 필요가 있다.