검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 103

        81.
        2007.03 KCI 등재 서비스 종료(열람 제한)
        This study was conducted to evaluate water quality in coastal sea of Kunsan using multivariate analysis. The analysis data in Coastal Sea of Kunsan use of surveyed data by the NFRDI from April 2000 to November 2002. Twelve water quality parameter were determined on each sample. The results was summarized as follow ; Water quality in coastal sea of Kunsan could be explained up to 62.782% by four factors which were included in loading of nitrogen-nutrients by Keum river(24.688%), suspended solids variation (12.180%), seasonal climate variation (18.367%) and variation of DIP (10.546%). To analyze spatially and monthly variation by factor score, it was divided by inner area and outer area spatially, and spring and summer monthly. The result of time series analysis by factor score, inner area of Kunsan coastal sea(St.1 and St. 2) was the most affected by nitrogen-nutrient and suspended solids due to runoff by Keum river. It could be suggested from these results that it is important to reduce the pollution loads from Kuem river for the control of the water quality in coastal sea of Kunsan.
        82.
        2007.03 KCI 등재 서비스 종료(열람 제한)
        Recently, eutrophication or lake and reservoir has become serious problem to man who want use that water for several purpose. In order to solve the eutrophication problem, the trophic state of that eutrophic lake and reservoir should be measured properly. For the purpose of this, various method to indicate the trophic state of lake and reservoir was developed by many researchers. This research was conducted to evaluate characteristics and eutrophication of water qualitymfor small scale reservoir in Kunsan. On-site investigation to 5 reservoirs and laboratory experiment were carried out during four seasons from November, 2003 to July, 2004. Twelve items measured field ana a laboratory. Measured data was analyzed to quantitative method by multivariate approach and eutrophication index. The result is summarized as following. 1) Showing the characteristics of water quality for reservoir in Kunsan, Okgu reservoir and Oknua reservoir was exceeded 4 grades of agricultural water standard in TP, TN and COD. This means that eutrophication was gone much, therefore, water-purity control of reservoir need. While, Mije reservoir that is used to Kunsan citizens' recreation was good in water quality. But, water quality exceeded 4 grades of agricultural Dater standard sometimes. 2) As a results of correlation analysis between variables of water qualify, Interrelation between variables which is connected with eutrophication was expressed good relationship as above 6.000 in correlation coefficients. The correlation coefficient(r) between COD and chlorophyll-a, total phosphorus and chlorophyll-a, total nitrogen and chlorophyll-a were 0.750, 0.720 and 0.600 respectively. Therefore, Change of water quality can grasp according to eutrophication progress degree. 3) If do evaluate to eutrophication by quantitative method which is proposed by OECD, US-EPA and Forsberg & Ryding, in the case of chlorophyll a, Okgu, Oknua and Daewi reservoir was eutrophic state and Mije and Geumgul reservoir was mesotrophic state. But, estimation by TN and TP showed highly eutrophic state (hypereutrophic) in all reservoirs. 4) If do evaluate by eutrophication index which is Carlson's TSI, revised carlson TSI and Walker's index, in the case of chlorophyll a, TSI values of Okgu, Oknua and Daewi reservoir is eutrophic state more than 50 and Mije and Geumgul reservoir was mesotrophic state as range of 40∼50 in TSI value. But, in the case of TP as nutrients, all reservoirs showed highly eutrophic state which was exceed to 70 in TSI value. According to above results, the water quality for small scale reservoirs in Kunsan is progressing by trophic state. therefore, for continuous use as agriculture water, we had better do establishment of management plan about water quality.
        83.
        2006.11 KCI 등재 서비스 종료(열람 제한)
        This study was conducted to evaluate characteristic of water quality in coastal sea of Incheon using a multivariate analysis. The analysis data in coastal sea of Incheon was aquired by the NFRDI data which was surveyed from March 1997 to November 2003. Eleven water quality parameters were determined on each survey. The results were summarized as follow ; Water quality in Incheon coastal sea could be explained up to 64.62% by three factors which were included in loading of fresh water and nutrients by the land(36.98%), seasonal variation(16.19%), and internal metabolism (11.24%). The results of time series analysis by factor score, in case of factor 1, station 1 influenced by Han river was shown to high factor score and station 3 located by outer sea was shown to low factor score. In case of factor 2, station 1 was appeared to high variation and station 3 was appeared to low variation. The result of cluster analysis by station was classified into three group that has different water quality characteristics. Especially, station 1 which affected by Han river and station 4 which affected by sewage treatment plant was appeared to considerable water quality characteristics against other station. In yearly cluster analysis, three group was classified and water quality in 2003 years due to high precipitation was different to another year. It could be suggested from these results that it is important to control discharge of fresh water by Han river and sewage treatment plant for water quality management of coastal sea of Incheon.
        84.
        2006.10 KCI 등재 서비스 종료(열람 제한)
        The eco-hydrodynamic model was used to estimate the environmental capacity in Gamak Bay. It is composed of the three-dimensional hydrodynamic model for the simulation of water flow and ecosystem model for the simulation of phytoplankton. As the results of three-dimensional hydrodynamic simulation, the computed tidal currents are toward the inner part of bay through Yeosu Harbor and the southern mouth of the bay during the flood tide, and being in the opposite direction during the ebb tide. The computed residual currents were dominated southward flow at Yeosu Harbor and sea flow at mouth of bay. The comparison between the simulated and observed tidal ellipses at three station showed fairly good agreement. The distributions of COD in the Gamak bay were simulated and reproduced by an ecosystem model. The simulated results of COD were fairly good coincided with the observed values within relative error of 1.93%, correlation coefficient(r) of 0.88. In order to estimate the environmental capacity in Gamak bay, the simulations were performed by controlling quantitatively the pollution loads with an ecosystem model. In case the pollution loads including streams become 10 times as high as the present loads, the results showed the concentration of COD to be 1.33~4.74㎎/ℓ(mean 2.28㎎/ℓ), which is the third class criterion of Korean standards for marine water quality. In case the pollution loads including streams become 30 times as high as the present loads, the results showed the concentration of COD to be 1.38~7.87㎎/ℓ(mean 2.97㎎/ℓ), which is the third class criterion of Korean standards for marine water quality. In case the pollution loads including streams become 50 times as high as the present loads, the results showed the concentration of COD to be 1.44~9.80㎎/ℓ(mean 3.56㎎/ℓ), which is the third class criterion of Korean standards for marine water quality.
        85.
        2006.04 KCI 등재 서비스 종료(열람 제한)
        Eight USA soils were used for this study. The purpose of this study is to illustrate the characteristics of metals in the soil based on the sequential extraction with increasing pH. Extracts were analyzed for metals by ICP-MS and for dissolved organic carbon(DOC). As the pH increasing, the DOC extracted in each increment initially decreased and reached the minimum at pH 3 and then increased substantially at higher pH values. According to the pH increasing, the extraction of Ca, Cu, and Zn were illustrated as L type. It was found that there were strong correlation between the extracted Fe and DOC(r=0.64~0.97).
        86.
        2004.09 KCI 등재 서비스 종료(열람 제한)
        The modified biochemical oxygen demand (MBOD) were conducted to evaluate the water quality and fertility in the Mangyeong river from november 2002 to april 2003. MBOD method was used to evaluate algal growth potentials and their limiting factors. MBOD depends on the amount of available inorganic nutrient and organic substrate during 5-day incubation in the dark condition at 20℃. The MBOD assay depends on inorganic nutrients such as phosphorus and nitrogen as well as reduced carbon as called MBOD, MBOD-P, and MBOD-N, respectively. The concentration of pollutants were in the range of 3.08~48.36 mg/L for COD. The concentration of nutrients were in the range of 0.37~111.62 mg/L for dissolved inorganic nitrogen (DIN) and 0.00~1.03 mg/L for dissolved inorganic phosphorus (DIP). The results of MBOD bioassay showed that the MBOD, MBOD-P and MBOD-N values were 15~173 mg O2/L, 13~165 mg O2/L and 66~175 mg O2/L ranges, respectively. The MBOD values are found to be the highest in Iksan River and the lowest in Hari River throughout the Mangyeong River. The relationships of MBOD, MBOD-P and MBOD-N in MBOD method were generally found in MBOD≒MBOD-P≒MBOD-N. But the result of Gosan was appeared to MBOD≒MBOD-N>MBOD-P. The MBOD-N value was higher 3 to 5 times than the MBOD-P value in the Gosan station. The algal growth potentials expressed as the concentration of chlorophyll-a were maximum 20 times more than algal biomass in the water column.
        87.
        2004.03 KCI 등재 서비스 종료(열람 제한)
        This study was conducted to evaluate water quality in the Mankyung River using multivariate analysis. The analysis data which was surveyed from January 1996 to December 2002 in Mankyung river was aquired by the ministry of environment. Twelve water quality parameters were determined on each survey. The results were summarized as follow ; Water quality in the Mankyung River could be explained up to 74.90% by four factors which were included in loading of organic matter and nutrients by the tributaries(43.28%), seasonal variation(10.40%), loading of pathogenic bacteria by domestic sewage of Gapcheon (12.41%) and internal metabolism in river(8.81%). The result of cluster analysis by station was classified into three group that has different water quality characteristics. Especially, Iksan river was appeared to considerable water quality characteristics against other station. In monthly cluster analysis, three group was classified by seasonal characteristics. Also, in yearly cluster analysis, three group was classified. It is necessary to control the pollutant loadings by domestic sewage and livestock waste for water quality management of Mankyung river.
        88.
        2003.09 KCI 등재 서비스 종료(열람 제한)
        Gunsan coastal area is one of region increasing pollution problems. To improve water quality, the reduction of these nutrients loads should be indispensible. In this study, the three-dimensional numerical hydrodynamic and ecosystem model were applied to analyze the processes affecting the eutrophication. In field survey, the average concentrations of dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorus(DIP) at surface waters were found to be 0.43㎎/ℓ and 0.03㎎/ℓ respectively, which were exceeding second grade of water quality criteria. In hydrodynamic modelling, the comparison between the simulated and observed tidal ellipses showed fairly good agreement. The ecosystem model was calibrated with the observed data in study area. The simulated results of DIN were fairly good coincided with the observed values within relative error of 32.39%, correlation coefficient(r) of 0.99. In the case of DIP, the simulated results were fairly good coincided with the observed values within relative error of 24.26%, correlation coefficient(r) of 0.82. The simulations of DIN and DIP concentrations using ecosystem model were performed under the conditions of 20~80% reductions for pollutant loading. At simulation results, concentration of DIN and DIP were reduced to 20~80% and under 10% in case of the 80% reduction of polltuant loading, respectively.
        89.
        2002.12 KCI 등재 서비스 종료(열람 제한)
        This study was conducted to evaluate water quality in the Keum River using multivariate analysis. The analysis data in Keum river made use of surveyed data by the ministry of environment from January 1994 to December 2001. Thirteen water quality parameter were determined on each sample. The results was summarized as follow; Water quality in the Keum River could be explained up to 71.39% by four factors which were included in loading of organic matter and nutrients by the tributaries (32.88%), seasonal variation (16.09%), loading of pathogenic bacteria by domestic sewage of Gapcheon (13.39%) and internal metabolism in estuary as lakes(9.03%). For spatial variation of factor score, four group was classified by each factor characterization. Station 1 and 2 was influenced by Daechung dam, station 3 was affected by domestic sewage of Gapcheon, station 10~12 was affected by estuary dyke and the rest station. The result of cluster analysis by station was classified into four group that has different water quality characteristics. In monthly cluster analysis, three group was classified according to seasonal characteristic. Also, in yearly cluster analysis, three group was classified. It is necessary to control the pollutant loadings by Gapcheon inflow domestic sewage in Daejeon city for the sake of water quality management of Keum river.
        90.
        2002.12 KCI 등재 서비스 종료(열람 제한)
        To evaluate the change for water quality after the water gate operation in Shiwha lake, in situ survey were conducted on september in 2000 and January, march, jane in 2001. Chemical characteristics and eutrophication level was estimated from the survey data. The water quality of the Shihwa lake was greatly affected by pollutant load from rainfall, and formation of stratification in summer and winter was increased to effect on nutrient release from sediment. Especially, high concentration of chlorophyll-a was occurred in autumn, due to increased nutrient, high water temperature and low salinity after rainfall runoff. The mean concentration of DIN, DIP were 0.346mg/L, 0.0217mg/L in surface water and 0.826mg/L, 0.0415mg/L in bottom water, respectively, which were over Ⅲ grade of seawater standard. Also high percentage of ammonia nitrogen to DIN in bottom water for autumn and winter was affected by released nutrient from sediment. Correlation analysis of chlorophyll-a versus TSS was shown that organic matter was affected by autochthonous organic matter stem from the algae, these factor showed reverse correlation about salinity. Closely correlations among to the water quality constituent in continuity survey was appeared. The results of eutrophication index estimation showed the high potentiality of red tide occurrence in Shiwha lake, particularity in summer or fall. Overall water quality was greatly improve to compared with measuring data during 1997~1998 at the beginning water gate operation, which reported by KORDI. Therefore, to improve of water quality in Shiwha lake, we need to establish of management plan about nutrient release from sediment, rainfall runoff, maximum of seawater exchange.
        91.
        2002.06 KCI 등재 서비스 종료(열람 제한)
        This study was to evaluate the impact of river runoff and salt intrusion by tide on nutrient balance of estuary during a complete tidal cycle. 24 hours time series survey was carried out during a spring tide July 2001 on a tidal estuary in the Keum river. Three stations(A,B,C) were set along a transect line of about 10km, which linked the lower part of estuary dyke to the subtidal zone. Surface water was sampled simultaneously at each station every hours for the determination of nutrients. Water temperature, pH and dissolved oxygen were measured in situ. Riverine input of silicate and nitrate during ebb tide significantly increased the concentration of all stations. Conversely, during high tide, nutrient concentration were lowered by the mixing of fresh water with sea water. Ammonium nitrogen concentration were higher at intertidal zone(Stn.B) due to sewage inflow to Kyeongpo stream and ammonium release under anaerobic conditions. Also, these results was discussed as a biological component that influences the processes of nutrient regeneration within the estuary. Best correlations were found at lower part of estuary dyke(Stn.A) for salinity against DIN(Y=0.121 Sal.+4.97, r2=0.956) and silicate(Y=0.040 Sal.+2.62, r2=0.785). But no significant correlation was found between salinity and ammonium. Unbalanced elemental ratio(N/P, Si/N and Si/P) depended significantly on the import of nutrients (silicate & nitrate nitrogen) from river and stream. The effect of the tidal cycle and river runoff is important that in determining the extend of the variations in nutrient concentrations at all station.
        92.
        2001.10 KCI 등재 서비스 종료(열람 제한)
        갯벌내 미생물에 의한 유기물 분해능력을 조사하기 위하여 환경특성이 다른 세지점의 갯벌을 대상으로 분해능력을 측정한 결과는 다음과 같다. 갯벌의 입도조성은 육상기원 퇴적물의 영향이 상대적으로 큰 만경강과 동진강 하구 갯벌이 하제갯벌보다 전체적으로 입도조성이 작았다. 갯벌의 유기물 분해능력은 초기에는 아주 느리게 일어났으며, 유기물 분해율은 동진강 하구갯벌에서 87.63%, 만경강 하구갯벌에서 86.36%, 하제갯벌에서 85.88%로 나타났고, 시험수 자체의 유기물 분해율은 27.5∼30%로 나타났다. 유기물 분해속도(K')는 동진강 갯벌이 1.364day-1, 만경강갯벌이1.080day-1, 하제갯벌이 0.735day-1로 나타나, 축산폐수의 영향을 많이 받고 유기물함량이 상대적으로 높은 동진강 하구 갯벌에서 높은 유기물 분해속도상수를 나타냈다. 해수중에서의 유기물 분해량을 뺀 순수한 갯벌 미생물에 의해 유기물 분해량은 동진강 하구갯벌이 0.4㎎/g/day, 만경강 하구갯벌이 0.36㎎/g/day 및 하제갯벌이 0.36㎎/g/day로써 평균 0.37㎎/g/day이었다. 단위면적당 유기물 분해량을 계산하기 위해 1ha당 표층 0.1㎝ 에서만 미생물이 작용하고, 갯벌의 비중을 2.5g/㎤으로 가정하여 1ha당 유기물 제거능력을 산출한 결과 9.25㎏/ha로 추정되었다. 갯벌의 유기물 분해속도는 유기물 함량을 간접적으로 나타내는 IL, CODsed, TC와 높은 양의 상관성(R2=0.97∼1.00)을 보였고, 물리적인 특성인 입도와는 입도조성이 작을수록 분해속도가 높게 나타났다.
        93.
        2001.04 KCI 등재 서비스 종료(열람 제한)
        The Keum river is one of the important river in Korea and has a drainage area of 9,873 ㎦. The Keum river is deepening pollution state due to development of the lower city and construction of a industrial complex. The water quality of the Keum river come to eutrophication state and belong to Ⅲ grade of water quality standard. The concentration BOD in river is affected by the organic loading from a tributary and the algae biomass that largely happen to under eutrophication state. In the eutrophic water mass such as the Keum river, the autochthonous BOD was very important part for making a decision of water quality management, because it was accounted for majority of the total BOD. The purpose of this study was to survey the characteristics of water quality in summer and to estimate reaction coefficient. Also, we studied to correlationship between chlorophyll a and BOD(COD) for estimation of the autochthonous BOD. The correlationship between chlorophyll a and BOD(COD) were obtained through the culture experiment of phytoplankton in the laboratory. The results of this study may be summarized as follows ; The characteristics of water quality in summer were belong to Ⅲ∼Ⅳgrade of water quality standard as BOD and nutritive condition is very high. The BOD, ammonia nitrogen and phosphate loadings in Miho stream which inflowing untreated sewage from Chungju city was occupied with 64.07%, 26.36%, 46.08%, respectively. Maximum nutrient uptake (Vmax) was 0.4400 μM/hr as substrate of ammonia nitrogen, 0.1652 μM/hr as substrate of phosphate. Maximum specific growth rate (μmax) was 1.2525 hr-1 as substrate of ammonia nitrogen, 1.5177 hr-1 as substrate of phosphate. The correlation coefficient between chlorophyll a and BOD by the culture experiment were found to be 0.911∼0.935 and 0.942∼0.947 in the case adding nutrient and no adding nutrient, respectively. The correlation coefficient between chlorophyll a and COD through the culture experiment were found to be 0.918∼0.977 and 0.880∼0.931 in the case adding nutrient and no adding nutrient, respectively. The autochthonous BOD(COD) was estimated to the relationship between BOD(COD) and chlorophyll a. The regression equation were found to be autochthonous BOD=(0.045∼0.073)×chlorophyll a and autochthonous COD=(0.137∼0.182)×chlorophyll a.
        94.
        2001.02 KCI 등재 서비스 종료(열람 제한)
        The Keum river has been utilized for drinking water supply of several city including Kunsan city and is deepening pollution state due to numerous municipal and industrial discharges. The concentration BOD in river is affected by the organic loading from a tributary and the algae biomass that largely happen to under eutrophication state. In the eutrophic water mass such as the Keum river, the autochthonous BOD was very important part for making a decision of water quality management, because it was accounted for majority of the total BOD. The predict of water quality has important meaning for management of water quality pollution of the Keum river. The purpose of this study will manage and predict water quality of the Keum river using QUAL-2E model considering the autochthonous BOD. The estimation of autochthonous BOD represented that the relationship between BOD and chlorophyll a. The regression equation was shown to be autochthonous BOD=β5×chlorophyll a. The results of this study may be summarized as followed; The QUAL-2E model was calibrated with the data surveyed in the field of the study area in June, 1998. The calculated value by QUAL-2E model are in good agree to measured value within relative error of 7.80∼20.33%. Especially, in the case of the considering autochthonous BOD, the calculated value of BOD were fairly good coincided with the observed values within relative error of 15%. But the case of not considering autochthonous BOD, relative error of BOD was shown to be 43.2%. In order to attain Ⅱ grade of water quality standard in Puyo station which has a intake facility of water supply, we reduced to the pollutants loading of tributaries. In the case of removed 100% BOD of tributaries, the BOD of Puyo station was 4.07㎎/ℓ, belong to Ⅲ grade of water quality standard. But in the case of removed 88% nutrient of tributaries, it was satisfied to Ⅱ grade of water quality standard as below 3㎎/ℓof BOD. For estimation of autochthonous BOD in Keum river, we are performed simulating in accordance with reduction of nutrient load(50∼100%) under conditions removal 90% organic load. Occupancy of autochthonous BOD according to nutrient loading reductions were varied from 25.97∼79.51%. Occupancy of autochthonous BOD was shown to be a tendency to increasing in accordance with reduction of nutrient loading. Showing the above results, the nutrient that one of the growing factor of algae was important role in decision of BOD in the Keum river. For the water quality management of the Keum river, therefore, it is necessary to considering autochthonous BOD and to construction of advanced sewage treatment plant for nutrient removal.
        95.
        2000.06 KCI 등재 서비스 종료(열람 제한)
        충남 서천군 춘장대에서 채취한 갯벌을 통수칼럼에넣고 오염물질 정화능력을 평가 해 보았다. 각 칼럼에 사용된 시료수는 하수를 G2여과지(6㎛)로 여과한 여액(R1), 생하수를 GF/C여과지(1.2㎛)로 여과 후 하수중의 미생물에 의한 영향을 제거하기 위하여 고압멸균기(autoclaver)로 120℃에서 15분간 멸균한 하수( R2), 여과·멸균된 하수를 membrane filter로 여과한 해수와 1:1(하수:해수)로 혼합한 시료수(R3) 그리고 R3에서 사용된 하수와 해수를 이용해 그 비를 1:2로 혼합한 시료수(R4)를 이용하였다. 4종류로 조제된 시험수를 이용한 통수실험 결과를 요약하면 다음과 같다. 통수실험에 의해 제거된 COD 양은 시료수에 하수의 함유량이 증가할수록 증가하였다. 암모니아질소의 경우 각 칼럼에서 580분 실험한 후 총 누적 제거양은 R1 90.1㎎, R2 81.0㎎, R3 27.6㎎, R4 4.1㎎이었다. R1과 R2에서 총 누적 제거 양이 해수가 1:1로 함유된 R3보다는 약 3배 높았고, 생하수와 해수가 1:2로 함유된 R4보다는 약 20배 높아 시료수에 하수의 함량이 높을수록 COD와 마찬가지로 암모니아질소가 잘 제거되는 것으로 판단되었다. 총인의 경우 각 칼럼에서 580분 실험한 수 제거된 총 누적 양은 R1 3.4㎎, R2 4.2㎎, R3 5.6㎎, R4 2.0㎎이었다. 평균 유입수 농도와 평균 유출수 농도로 구한 Pb의 평균 제거율은 R3와 R4에서 94.6%와 94.9%로 R1과 R2에서의 66.5%와 77.0%보다 약간 높았고, Cd의 평균 제거율도 R3와 R4에서 93.1%와 88.5%로 R1과 R2에서의 61.2%와 82.7%보다 약간 높았다. 이상과 같이 칼럼실험에서 중금속은 해수가 첨가된 시료에서 제거율이 높았다. 하지만 초기 20분간 흡착된 중금속의 양은 580분 동안 흡착된 총 양의 3∼4%로 유사한 값을 나타내었다.
        96.
        2000.04 KCI 등재 서비스 종료(열람 제한)
        갯벌의 오염물질 정화능력 평가를 위한 기초조사로서 환경적 특성이 다른 3지점 갯벌을 채취하여 수직적인 물리, 화학적 특성을 조사하였다. 갯벌의 입도특성을 보면, 금강하구에 위치한 어은리 갯벌의 니질 함량이 98.89%를 보인 반면 충남 서천에 위치한 춘장대갯벌은 모래함량 97.99%를 나타내었다. 새만금지구 내 위치한 계화도 갯벌은 니질 32.81%, 사질 67.19%로 나타나났다. 갯벌의 화학적인 특성은 니질 함량이 높은 어은리 갯벌에서 유기물 관련인자(IL, COD, POC)가 다른 두 갯벌 보다 3∼4배 높았으며, 각 지점에서 층별 농도 분포는 아래로 갈수록 약간 증가하는 것으로 나타났다. 상관분석 결과 중 갯벌의 유기오염물질과 관련 있는 인자인 I.L., COD 및 POC, PON 사이에는 0.821∼0.940의 높은 상관성이 있었다. 또한 pH는 COD, PON 및 POC와 0.9 이상의 높은 상관성을 나타냈다. 갯벌의 층별 투수실험 결과 춘장대 갯벌은 평균 투수 계수가 0.01584㎝/s로서 투수량이 18.66ml/min이었다. 하지만 어은리 및 계화도 갯벌은 거의 투수되지 않았다.
        97.
        1999.08 KCI 등재 서비스 종료(열람 제한)
        Microorganisms utilizing petroleum as substrate were screened from the seawater in Pusan coastal area. Among them, fifty strains utilized bunker-A oil as a sole carbon and energy source. Five of these fifty strains were selected to experiment this study. According to the taxonomic characteristics of its morphological, cultural and biochemical properties, the selected strains were named Pseudomonas sp. EL-12, Flavobacterium sp. EL-15, Acinetobacter sp. EL-18, Enterobacter sp. EL-27 and Micrococcus sp. EL-43, respectively. The optimal medium compositions and cultural conditions for assimilation of bunker-A oil by the selected strains were 1.5-2% bunker-A oil, 0.1% NH4NO3, 1-1.5% MgSO4·7H2O, 0.05-0.15% KCl, 0.1-0.15% CaCl2·2H2O, 2.5-3.5% NaCl, initial pH 8-9, temperature 30℃ and aeration, respectively. The utilization and degradation characteristics on the various hydrocarbons by the selected strains were showed that bunker oil, n-alkane and branched alkane compounds were highly activity than cyclic alkane and aromatic hydrocarbon compounds.
        98.
        1999.04 KCI 등재 서비스 종료(열람 제한)
        Determining factors and temporal & spatial characteristics of COD(Chemical Oxygen Demand) at the sea surface in Jinhae bay have been examined by using seasonal data, taken at twenty six stations cver the whole bay during 1989∼1994 by NFRDA. The data have been analyzed in terms of long term means, anomalously large values. Jinhae bay is divided into three regions based on the time mean : mouth of Jinhae bay, inner sea of Masan bay, western sea of Jinhae bay called region 1,2 and 3, respectively. The horizontal distribution of the long term mean of COD at each station is similar to those of nitrogen and phosphorus. Characteristics of whole mean variation in the year shows high range of variation in region 2. It was appear to decreases every year in whole trend. Factors determining seasonal variation in whole COD mean are relative to salinity and nutrient, affected by precipitation in summer. Spatial variation shows high range of fluctuation in region 2 compare to other region. Factors determining of spatial variation of COD was appear to nutrient, affected by pollutant load of land area and bottom sediment. The long term mean of COD at each station is closely related with thats of nutrients. The coorelation coefficient between COD and nitrogen, phosphate phosphorus was found to be high as 0.75, 0.78, respectively. Anomalously large COD was observed 14 times at 6 stations. These stations are located in inner sea of Masan bay(Region 2) and Songjeong bay(Region 1). The seasonal frequency of the observed anomalous COD is large in April, and other seasons are much the same.
        99.
        1999.04 KCI 등재 서비스 종료(열람 제한)
        To investigate the water quality characteristics and eutrophication of the Keum River, survey were conducted on samples collected from 6 stations in Aug. and Oct. in 1995 and Jan. and May in 1996. The results were summarized as follows ; Concentration of pollutants were in the range of 1.74∼6.35(mean 3.81)㎎/ℓ for BOD and 1.98∼8.21(5.14)㎎/ℓ for COD and 1.46∼51.94(18.52) g/ℓ for TSS. Water quality were evaluate to be 2∼3 grade of station 1 and other stations were 3∼4 grade of water quality criteria. The concentration of nutrients were in the range of 55.2∼735.3(309.3)㎍-at/ℓ for Dissolved inorganic nitrogen(DIN) and 0.06∼6.03(2.80)㎍-at/ℓ for dissolved inorganic phosphate(DIP). Nutrient concentrations in Keum River were usually high and the DIN/DIP ratio ranged from 72 to 2648. The concentration of chlorophyll-a was in the range of 1.1∼143.7(44.3)㎎/㎥. Chlorophyll-a concentration were high 10㎎/㎥ except station 1, which is the value of eutrophication criteria by EPA. Correlations between nutrients and chlorophlly-a were not significant. According to eutrophication evaluation, Keum river was equivalent to the eutrophic state.
        100.
        1998.12 KCI 등재 서비스 종료(열람 제한)
        It is noted that the red tides and the oxygen-deficient water mass are extensively developed in Masan Bay during summer. The nutrients mass balance was calculated in Masan Bay, using the three-dimensional numerical hydrodynamic model and the material cycle model. The material cycle model was calibrated with the data obtained on the field of the study area in June 1993. The nutrients mass balance calculated by the combination of the residual currents and material cycle model results showed nutrients of surface and middle levels to be transported from the inner part to the outer part of Masan Bay, and nutrients of bottom level to be transported from outer part to inner part of Masan Bay. The uptake rate of DIN in the box A1(surface level of inner part) was found to be 337.5㎎/㎥ ·day, the largest value in all 9 boxes and that of DIP was found to be 18.6㎎/㎥·day in box A1, and the regeneration rate of DIN was found to be 78.2㎎/㎥· day in the box A3(bottom level of inner part), and that of DIP was found to be 18.6㎎/㎥· day in box A1. The regenerations of DIN and DIP in the water column of the entire Bay were found to be 7.66ton/day and 760㎏/day, respectively. And the releases of DIN and DIP from the sediments of the entire Bay were found to be 2.86ton/day and 634㎏/ day, respectively. The regeneration rate was 2.5 times as high as the release rate in DIN, and 1.2 times in DIP. The results of mass balance calculation showed not only the nutrients released from the sediments but the nutrients regenerated in water column to be important in the control and management of water quality in Masan Bay.
        1 2 3 4 5