검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2,998

        2041.
        2006.04 구독 인증기관·개인회원 무료
        The effect of TiC content on oxidation behavior of the sintered WC-TiC-TaC alloys with 2 mass% TaC and different TiC amounts of 3-45 mass% was investigated through oxidation tests in air at 973K. As a result of the tests, it was revealed that with increasing TiC content in the alloys, mass changes caused by oxidation and thickness of the scale decreased. Thus, it is considered that the main component of the scales changed gradually from to with increasing TiC content in the alloys, and oxygen diffusion through the scale to the alloys was inhibited gradually.
        2042.
        2006.04 구독 인증기관·개인회원 무료
        The solubility of Cr in cubic carbides in the systems WC-Co-TaC and WC-Co-ZrC has been determined using equilibrium samples. Thermodynamic calculations were used to design the alloys through extrapolations of Gibbs energy expressions. The alloys were designed to have a microstructure containing the following phases: WC, liquid, , graphite and cubic carbide. The alloys were investigated using scanning electron microscopy and analyzed using energy-dispersive X-ray spectrometry. The present work shows how the Cr solubility depends on which cubic carbide former that is present. The WC-Co-Cr-Zr alloy has no detectable amount of Cr whereas the WC-Co-Cr-Ta alloy has 12% Cr in the cubic carbide.
        2043.
        2006.04 구독 인증기관·개인회원 무료
        Fabrication of a nano-laminar ceramic composite by sintering thin ceramic plates was examined. Silver-coated glass flakes with a thickness of less than were consolidated by pulsed current sintering or hotpressing to obtain model composites. The samples sintered at the optimum conditions were fairly dense, and the flakes were aligned by uniaxial press. The metal coating remained on the flakes through the sintering process, and became an interface layer between the flakes. No crack propagation through the transverse direction of the lamellar was observed in the indentation test. The possibilities of high resistance against crack propagation was suggested.
        2045.
        2006.04 구독 인증기관·개인회원 무료
        Porous titanium implants can be produced by powder metallurgy in combination with suitable space holder materials. Various mechanical experiments were done to characterize this material regarding the influence of the processing parameters on microstructure and mechanical properties taking into account the properties of the human bone. In this paper, the anistropic behaviour of uniaxially compacted samples was analysed in compression tests and compared to the behaviour of isostatically pressed samples. The failure of the struts of the porous titanium and the crack- initiation and -growth was examined by in-situ SEM analysis.
        2046.
        2006.04 구독 인증기관·개인회원 무료
        The sinter-bonding behavior of iron based powder mixtures was investigated. To produce the green compacts to be joined the following powders based on AB grade NC 100.24 plain iron powder were used: NC 100.24 as delivered, PNC 30, PNC 60 and NC 100.24 + 4%Cu powder mixtures. Dimensional behaviour of all those materials during the sintering cycle was monitored by dilatometry. Simple ring shaped specimens as the outer parts and cylindrical as the inner parts were pressed. The influence of parts' composition on joining strength was established. Diffusion of alloying elements: copper and phosphorous, across the bonding surface was controlled by metallography, SEM and microanalysis.
        2047.
        2006.04 구독 인증기관·개인회원 무료
        Machining of sinter-hardened PM steels provides a challenge for part makers. To facilitate machining of these materials, a new additive (MA) has been developed to increase tool life during the machining process. Hard turning tests were performed to evaluate the effect of this new additive. Sintered compacts with the MA additive were compared to compacts without a machining aid and to compacts that contained the MnS additive. This paper discusses the improvement in machinability with this new additive in sinter-hardenable PM steels.
        2048.
        2006.04 구독 인증기관·개인회원 무료
        The sintering behavior of titanium-titanium nitride nanocomposite powders has been studied by dilatometry. Titanium. titanium nitride nanocomposite powders were produced by the reactive milling of micron sized titanium powder in nitrogen atmosphere. The Ti-TiN nanocomposite powders milled for various durations along with the initial micron sized Ti powders were then sintered in the temperature range of by a constant rate of heating . The linear shrinkage, shrinkage rate, activation energy for sintering and microstructure has been studied and discussed as a function of milling time.
        2049.
        2006.04 구독 인증기관·개인회원 무료
        The free sintering of metallic powders blended with non sintering inclusions is investigated by the Discrete Element Method (DEM). Each particle, whatever its nature (metallic or inclusion) is modeled as a sphere that interacts with its neighbors. We investigate the retarding effect of the inclusions on the sintering kinetics. Also, we present a simple coarsening model for the metallic particles, which allows large particles to grow at the expense of the smallest.
        2050.
        2006.04 구독 인증기관·개인회원 무료
        This paper investigates the characteristic of single-layered and multi-layered compacts made by selective laser sintering using titanium powder (TILOP45 and TILOP150, Sumitomo Titanium Corp.) There were few defects in smooth surface of laser sintered specimen in vacuum as compared to the laser sintered specimen in argon. Maximum tensile strength of singlelayered compact was about 200MPa. Multi-layered compacts show the density of around 75% and the adhesive bonding was not observed between layers, resulted in 70MPa of maximum bending strength and 50MPa of maximum tensile strength.
        2051.
        2006.04 구독 인증기관·개인회원 무료
        In contrast with the Finite Element Method, the Discrete Element Method (DEM) takes explicitly into account the particulate nature of powders. DEM exhibits some drawbacks and many advantages. Simulations can be computationally expensive and they are only able to represent a volume element. However, these simulations have the great advantage of providing a wealth of information at the microstructural level. Here we demonstrate that the method is well suited for modelling, in coordination with FEM, the compaction of ceramic particles that have been aggregated. Aggregates of individual ceramic crystallites that are strongly bonded together are represented by porous spheres.
        2052.
        2006.04 구독 인증기관·개인회원 무료
        Advanced melting technology is now being employed in the manufacture of stainless steel powders. The new process currently includes electric arc furnace (EAF) technology in concert with Argon Oxygen Decarburization (AOD), High Performance Atomizing (HPA) and hydrogen annealing. The new high performance-processing route has allowed the more consistent production of existing products, and has allowed enhanced properties, such as improved green strength and green density. This paper will review these processing changes along with the potential new products that are being developed utilizing this technology. These include high strength stainless steels such as duplex and dual phase as well as stainless steel powders used in high temperature applications such as diesel filters and fuel cells.
        2053.
        2006.04 구독 인증기관·개인회원 무료
        Sintered steels are materials characterized by residual porosity, whose dimension and morphology strongly affect the fatigue crack growth behaviour of the material. Prismatic specimens were pressed at from Astaloy CrM powder and sintered varying the sintering temperature and the cooling rate. Optical observations allowed to evaluate the dimensions and the morphology of the porosity and the microstructural characteristics. Fatigue tests were performed to investigate the threshold zone and to calculate the Paris law. Moreover tests were performed to complete the investigation. Both on fatigue and samples a fractographic analysis was carried out to investigate the crack path and the fracture surface features. The results show that the Paris law crack growth exponent is around 6.0 for sintered and around 4.7 for sintered materials. The same dependence to process parameters is not found for .
        2054.
        2006.04 구독 인증기관·개인회원 무료
        Optimized choice of material for two principally different types of PM components is presented. The first is characterized by high stresses in areas with high stress concentrations (for example synchronizer hubs with very sharp notches, typically <0.25mm in the pre-synchronizer slot and the inner splines). The second type has slightly larger notch radii (small spur gears and sprockets with typically notch radii between 1- 3mm). Diffusion alloyed materials are well suited for sharp notch components. Pre-alloyed materials are also well suited for applications with sharp notches if compressive residual stresses in the notch roots are created by appropriate process control. A free choice of material is available for components with the larger notch radii.
        2055.
        2006.04 구독 인증기관·개인회원 무료
        This paper presents the influence of the compositions of sintered Ti-Ni alloys on their thermo-mechanical properties. The Ti-Ni alloys having various compositions from 50at%Ni to 51at%Ni were sintered using elemental Ti and Ni powders by a pulse-current pressure sintering equipment. The deformation resistance in stress-strain curves increased with an increase in Ni content. In the case of Ti-50at%Ni, tensile strength and elongation were more than 500 MPa and 7%, respectively. The increase in Ni content also makes the transformation temperatures lower. The deformation resistance at a test temperature change from 293K and 353K in isothermal tensile test increased with elevating test temperature.
        2056.
        2006.04 구독 인증기관·개인회원 무료
        From a viewpoint of heat stress at high temperatures and contact thermal resistance, it is confirmed that the optimal structure is the skeleton structure using Cu substrate on the cooling side, which has excellent heat conductivity and the optimal installation method is to adopt a carbon sheet and a mica sheet to the high temperature side, where Si grease is applied to the low temperature side, under pressurized condition. The power of the developed modules indicated 0.5W in an module and 3.8 W with a SiGe module at 823K, respectively.
        2058.
        2006.04 구독 인증기관·개인회원 무료
        The master sintering curve (MSC) is derived from densification data over a range of heating rates and temperatures. To improve the accuracy, several modifications were proposed: multi-phase MSC for solid state sintering with phase changes, MSC for liquid phase sintering, and MSC with consideration of grain growth. The developed MSC models were applied to several material systems such as molybdenum, stainless steels, and tungsten heavy alloys (WHA), in order to evaluate the effect of compaction pressure, phase change, grain growth, and composition on densification, to classify regions having different sintering mechanism, and to help engineer design, optimize, and monitor sintering cycles.