검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 638

        24.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Narcissus (Narcissus spp.) bulbs were used to investigate contagious viral retention in the dormant stage. The amplified polymerase chain reaction (PCR) bands were screened using universal potyvirus primers and sequenced to identify specific viruses. To identify individual viruses, primers for specific viruses were designed, and reverse transcription (RT)-PCR was performed. The PCR fragments were sequenced and compared by phylogenetic analysis. Three potyviruses, cyrtanthus elatus virus A (CyEVA), narcissus yellow stripe virus (NYSV), and narcissus late season yellows virus (NLSYV) were singly or doubly detected in 18 samples from six cultivars of the 38 samples representing eight cultivars that were tested. Based on RT-PCR using specific primers, CyEVA was detected in the split corona daffodil cv. Orangery. NLSYV and NYSV frequently occurred as co-infections with each other in the double daffodil cv. Tahiti, and the N. cyclamineus daffodil cv. Tete-a-tete and cv. Tete Boucle. Results has shown that at least three potyviruses are present in imported Narcissus bulbs.
        4,000원
        25.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A one-year-old, female, Maltese dog was presented with head tilting, horizontal nystagmus, and tetraparesis. Blindness was first identified, and magnetic resonance imaging (MRI) scanning revealed diffuse lesion which was hyperintense on T2-weighted image over the cerebellum and brainstem. The immunosuppressive therapy had been administered, but the patient had no improvement. Re-performed MRI revealed the progression of the pre-existed inflammatory lesions. Treatment with prednisolone, leflunomide, cyclosporine, and cytosine arabinoside was initiated. However, neurological signs had been progressive, and the patient was euthanized. The histopathological examination revealed the disseminated granulomatous meningoencephalomyelitis (GME). This GME case suggests the importance of initiation of treatment at the appropriate time.
        4,000원
        26.
        2023.07 구독 인증기관 무료, 개인회원 유료
        By merging Bourdieu's cultural capital with self-determination theory, this study aims to better understand smoking cessation behaviour in Egypt. The results demonstrate that the accumulation of cultural capital satisfies three fundamental needs, contributes to the self-determination theory's motivating forms, and serves as an independent cause for smoking cessation in Egypt.
        4,000원
        27.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        인간에게 도움을 주기위해서 개발되고 운용되고 있는 드론은 인간의 삶을 풍요롭게 해주며 인간의 존엄 성을 높여주는 역할을 하고 있다. 드론은 우리에게 경제적 요구의 충족, 위험업무의 감소와 인명구조, 미려 한 디자인, 아름다운 영상촬영과 같은 만족감을 가져다주는데 이러한 만족감을 인문학적 가치라고 표현할 수 있다. 일손이 부족한 농촌에서 많은 노동력을 절감해주는 드론은 힘든 일로부터 인간을 벗어나게 해주는 역할뿐만 아니라 경제적 효율성을 제공해줌으로써 우리에게 풍부한 인문학적 가치를 제공해주고 있다. 경 찰과 소방에서 사용되는 드론도 위험한 업무로부터 인력을 보호하는 동시에 효율적으로 업무를 처리할 수 있도록 함으로써 인문학적 가치를 높여주고 있다. 취미용으로 사용되고 있는 드론은 미려한 디자인의 외모 와 아름다운 영상촬영을 가능하게 해줌으로써 우리의 삶을 더욱 풍요롭게 해줌으로써 높은 인문학적 가치 를 현시해주고 있다. 향후에도 다양한 분야로의 사용 확대가 예상되는 드론은 그만큼 인문학적 가치를 높여 줄 것으로 기대된다.
        6,300원
        28.
        2023.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study aimed to investigate the effect of visual input enhancement (VIE) on the comprehension of reading texts and the learning of two grammatical forms: English relative clauses and articles. Individual learners’ working memory (WM) capacity was also tested to explore its impact on the effectiveness of VIE. A total of 48 Korean college learners of English were assigned into three groups: (a) relative group receiving VIE on relative clauses (b) article group receiving VIE on articles, and (c) a control group receiving no VIE. Results showed that VIE did not have any negative effect on the learners’ reading comprehension. Rather, it had positive effects on the learning of the two grammatical forms. According to the findings, VIE on relative clauses enhanced the learners’ receptive knowledge of the grammatical form, whereas VIE on articles enhanced the learners’ productive knowledge of the form. There was a potential link between the effectiveness of VIE and the learners’ working memory processing ability. Pedagogical implications are also discussed based on these findings.
        6,400원
        30.
        2023.05 구독 인증기관·개인회원 무료
        Zinc injection into the coolant system of nuclear power plants is an effective method for reducing corrosion and improving performance. The effectiveness of this method is influenced by various factors such as zinc concentration and injection rate. This paper provides an overview of the factors affecting the effectiveness of zinc injection in nuclear power plants, with a focus on zinc concentration and injection rate, and discusses various research results on the effects of these factors on corrosion reduction and coolant system performance. Zinc concentration is an important factor affecting the effectiveness of zinc injection. The research results show that gradual increases in zinc concentration are more effective for coolant system stability. However, the concentration should not exceed the recommended levels as high zinc concentrations can have negative effects on the system. Injection rate is also an important factor affecting the effectiveness of this method. The research results show that gradual increases in injection rate are more effective for coolant system stability. However, excessive injection rates can have negative effects on the system such as overload of the zinc injection facility and chemical shocks within the coolant system, and therefore, should be optimized. In conclusion, zinc concentration and injection rate are important factors affecting the effectiveness of zinc injection in nuclear power plants. The optimal concentration and injection rate should be determined based on specific reactor conditions and system requirements, and efforts should be made to maximize corrosion reduction and performance improvement.
        31.
        2023.05 구독 인증기관·개인회원 무료
        Korean innovative SMR has been implemented developing with improved safety/economy and i- SMR technology development project to secure a competitive edge in SMR. For nuclear power plants, according to the revision of the Nuclear Safety Act (2013.6), it is mandatory to be reflected in the aging management program of nuclear power plants, and the aging management and regulation of major nuclear power plants are being strengthened. For i-SMR, chemistry environment and management strategy is essential to mitigate corrosion and radiation fields, since it has compacted and integrated module designs. Since 1994, zinc injection into the reactor coolant system (RCS) has been applied more than 100 PWRs in the world to mitigate primary water stress corrosion cracking (PWSCC) and to reduce outof- core radiation fields. In domestic NPPs, 7 have been applying zinc injection and had up to 90% radiation field reductions. For this reason, SMR needs to apply zinc injection for chemistry strategy. Zinc target concentration will be 5~40 ppb at i-SMR, based on Ni-Fe-Cr materials as same as PWRs. Zinc injection location is in volume and purification control system between the volume control tank and charging P/P where the pressure is moderate. Zinc injection skid can consist of two micro-controllable pump (one for operation and one for stand-by) and one injection tank (batching tank for zinc solution). Zn, Ni, Si, Fe, and activated corrosion products should be monitored to identify zinc injection controls and trends. Flux mapping for core performance monitoring should be evaluated. The application of zinc will be essential and effective and bring sustainable reliability for corrosion control and mitigation strategy to meet the risk-free i-SMR development.
        32.
        2023.05 구독 인증기관·개인회원 무료
        Pressurized Heavy Water Reactors (PHWR) have stored ion exchange resins, which are used in deuteration, dehydrogenation systems, liquid waste treatment systems, and heavy water cleaning systems, in spent resin storage tanks. The C-14 radioactivity concentration of PHWR spent resin currently stored at the Wolseong Nuclear Power Plant is 4.6×10E+6 Bq/g, which exceeds the limited concentration of low-level radioactive waste. In addition, when all is disposed of, the total radioactivity of C-14, 1.48×10E+15 Bq, exceeds the disposal limit of the first-stage disposal facility, 3.04×10E+14. Therefore, it is currently impossible to dispose of them in Gyeongju intermediate- and low-level disposal facilities. As to dispose of spent resins produced in PHWR, C-14 must be removed from spent resins. This C- 14 removal technology from the spent resin can increase the utilization of Gyeongju intermediate- and low-level disposal facilities, and since C-14 separated from the spent resin can be used as an expensive resource, it is necessary to maximize its economic value by recycling it. The development of C-14 removal technology from the spent resin was carried out under the supervision of Korea Hydro & Nuclear Power in 2003, but there was a limit to the C-14 removal and adsorption technology and process. After that, Sunkwang T&S, Korea Atomic Energy Research Institute, and Ulsan Institute of Science and Technology developed spent resin treatment technology with C-14-containing heavy water for the first and second phases from 2015 to 2019 and from 2019 to the present, respectively. The first study had a limitation of a pilot device with a treatment capacity of 10L per day, and the second study was insufficient in implementing the technology to separate spent resin from the mixture, and it was difficult to install on-site due to the enlarged equipment scale. The technology to be proposed in this paper overcomes the limitations of spent resin mixture separation and equipment size, which are the disadvantages of the existing technology. In addition, since 14CO2 with high concentration is stored in liquid form in the storage tank, only the necessary amount of C-14 radioactive isotope can be extracted from the storage tank and be used in necessary industrial fields such as labeling compound production. Therefore, when the facility proposed in this paper is applied for treating mixtures in spent resin tanks of PHWR, it is expected to secure field applicability and safety, and to reflect the various needs of consumers of labeled compound operators utilizing C-14.
        33.
        2023.05 구독 인증기관·개인회원 무료
        Radioactive waste generated during nuclear power plant decommissioning is classified as radioactive waste before the concentration is identified, but more than 90% of the amount generated is at a level that can be by clearance. However, due to a problem in the analysis procedure, the analysis is not carried out at the place of on-site but is transported to an external institution to identify concentration, which implies a problem of human error because 100% manual. As a way to solve this problem, research is underway to develop a mobile radioactive waste nuclide analysis facility. The mobile radionuclide analysis facility consists of a preparation room, a sample storage room, a measurement room, a pretreatment room, and a waste storage room, and is connected to an external ventilation facility. In addition, since the automation module is built-in from the sample pre-threatening step to the separation step, safety can be improved and rapid analysis can be performed by being located in the decommissioning site. As an initial study for the introduction of a mobile nuclide analysis facility, Visiplan, a preliminary external exposure evaluation code, was used to derive the analysis workload by a single process and evaluate the exposure dose of workers. Based on this, as a follow-up study, the amount of analysis work according to the continuous process and the exposure dose of workers were evaluated. As a result of the evaluation, the Regulatory dose limit was satisfied, and in future studies, internal and external exposure doses were evaluated in consideration of the route of movement, and it is intended to be used as basic data in the field introduction process.
        34.
        2023.05 구독 인증기관·개인회원 무료
        Among the twenty six nuclear power plants in Korea, twenty four plants are currently in operation excluding the two permanently shut-down Kori #1 and Wolsung #1 plants. The decommissioning process includes many tasks such as cutting, decontamination, disposal and treatment. Among the tasks, because cutting is one of the tasks performed close to the target structure, there is a possibility for the workers to be exposed excessively to the radiation. There are representative large structures such as steam generators, nuclear reactors, reactor coolant pump, and pressurizer, made of metals, and radioactive concrete, made of concrete. Especially, compared to the trend of research to manage the radiation exposure of steam generators that are directly connected to pressurizers, the trend of research to manage the radiation exposure of pressurizers to workers is not satisfactory. Moreover, although there have been many studies on radioactive concrete, the studies to manage the radiation exposure to workers with a systematic cutting scenario are insufficient. In this study, radioactive concrete, a representative large structure made of concrete, was selected as the target for evaluation. The conditions for evaluation were cutting speed (1~10 m2/hr) and the time for cutting (permanent shutdown~30 years after the shutdown). A cutting scenario was developed by applying the situation for abrasive decontamination beforehand and Hot-to-Cold and Cold-to-Hot, and effort was made to derive a reasonable plan. The evaluation result derived were hourly radiation dose distribution of 1.19~0.103 mSv/hour and 1.29~0.0113 mSv/hour for a scenario without abrasive decontamination (in the order of Hot to Cold, Cold to Hot), and hourly radiation dose distribution of 0.547~0.0479 mSv/hour and 0.608~0.0522 mSv/hour for a scenario with abrasive decontamination. The maximum value of collective dose derived was 1.54E+04 mSv at the cutting time of permanent shutdown with cutting speed of 1 m2/hour in the Cold to Hot scenario before abrasive decontamination, and the minimum value derived was 5.15E+01 mSv at the cutting time of 30-year after the permanent shutdown with cutting speed of 10 m2/hour in the Hot to Cold scenario after abrasive decontamination.
        35.
        2023.05 구독 인증기관·개인회원 무료
        Radioactive waste must be stored for at least 300 years and must bear astronomical costs. In addition, unexpected potential risk factors are also a considerable burden. In the case of low-level radioactive waste, combustible and liquid low-contamination radioactive waste can be treated relatively easily through high-temperature plasma which the volume can be reduced by 1/250 and the weight by 1/30. It is possible to permanently dispose of the ash leached after plasma treatment in a more stable manner compared to the conventional methods. Types of low-level combustible radioactive waste, including paper, vinyl, clothing, filters, and resins, account for more than 30% of the total waste volume. Furthermore, high-temperature plasma treatment of low-level radioactive waste from petrochemical plants and medical institutions have many advantages, namely astronomical cost savings, securing free space in existing storage facilities, and improving the image of nuclear energy. Korea is preparing to decommission the Kori No. 1 nuclear power plant, and small and mediumsized enterprises and related organizations are conducting various studies to incinerate radioactive waste. In foreign countries, Britain began incineration technology in the 1970s, and Plasma Energy Group, LLC, headquartered in Florida, USA, physically changed the molecular structure of the material by combining plasma chambers and plasma arcs and obtained a patent application in 1992. Germany was approved for operation in 2002, and Switzerland completed a trial run of a plasma technologybased facility in 2004. Important radionuclides in terms of radioactive gas waste treatment include inert gases, radioiodine, and radioactive suspended particles. Gas waste is compressed in a compressor through a surge tank in the gas waste treatment system and filters at each stage. after that, the shortlife nuclide is naturally collapsed for 30 to 60 days in the storage or activated carbon adsorbent in the attenuation tank and released through HEPA filters. The radioactive concentration at discharge is monitored and managed using continuous monitoring equipment, and the oxygen concentration is managed in the gas waste treatment system to prevent explosion risk. The problem of radioactive waste disposal is not only a problem for people living in the present era, but also a big social issue that brings a burden to future generations While interest in plasma treatment is increasing from the decommissioning of the Kori Unit 1. in Korea, it is showed that there is a lack of systematic management and research especially in the radioactive volatile gases fields, that’s why I propose some ideas as follows. First, the government and related institutions should invest to the continuous radioactive monitoring system to produce and distribute continuous radioactive monitoring facilities with an affordable price. Second, it is recommended that radioactive waste incineration would be connected to the GRS system of the plant’s gas radwaste treatment system, and radioactive volatile materials should be monitored through continuous monitoring system. Third, radioactive volatile materials generated according to the temperatures and times during plasma incineration treatment are different. Therefore, prior classification of each expected radioactive volatile substance must be performed before incineration.
        36.
        2023.05 구독 인증기관·개인회원 무료
        When decommissioning and operating nuclear power plants, a lot of radioactive waste in concentrated waste powder, slurry, sludge, and powder is generated. The radioactive waste, non-conformity for disposal, cannot be treated or disposed of, but is currently being stored instead. To dispose of the waste, the waste can be solidified by mixing with an appropriate solidification agent. However, when the solidification agent and powder particles are mixed as in the conventional method, the final volume of the waste form to be disposed of increases. In order to solve this problem, in this study, volume reduction was achieved, compared to the existing powder, by applying the roll compaction technology to mold the radioactive waste into compressed pellets. Soil, concrete, concentrate waste, and contaminated soil powder were used as test materials, and pellets were prepared under different operating conditions. Subsequently, a compressive strength test was performed to confirm the integrity and optimal process conditions of the manufactured pellets. However, in order to perform the compressive strength test, the upper and lower surfaces of the pellets must be horizontal, but the pellet has the shape of two tetrahedrons joined together. Hence, test specimens for measuring compressive strength were prepared by making a surface treatment jig. The compressive strength test showed a high strength of 5.20~28.20 MPa. The process conditions showing high compressive strengths were selected as the optimal process conditions. Finally, the volume reduction ratios were calculated by measuring the weight, density and volume of the manufactured pellets. The degrees of volume reduction of the manufactured pellets compared to the existing powder were checked. When the roll gap was 0 mm, the average reduction ratios of the test materials were 3.7 for the soil, 4.0 for the concrete, 4.6 for the concentrate waste, and 3.8 for the contaminated soil. When roll gap was 1 mm, the ratios were 2.7 for the soil, 2.9 for the concrete, 3.4 for the concentrate waste, and 2.8 for the contaminated soil. Therefore, from a conservative point of view (Roll gap = 1 mm), when powdered waste is formed into pellets, it means that the volume is reduced by 1/2.7 for soil, 1/2.9 for concrete, 1/3.4 for concentrated waste, and 1/2.8 for contaminated soil.
        37.
        2023.05 구독 인증기관·개인회원 무료
        For Korean nuclear fuel cycle project, it is necessary to design and evaluate the integrity of spent fuel storage. For the design and evaluation of spent fuel storage, it is necessary to evaluate the properties of various materials used in spent fuel storage. The materials previously considered in the design of nuclear power plants were limited to static properties and were listed in design and manufacturing code and standards. However, for the evaluation of the storage containers in scenarios such as transportation and events, dynamic material property evaluations are required. Research on the dynamic properties of materials is generally conducted in the fields of automotive and aerospace, and most of the studies are on metal materials under sheet conditions. Since the structural materials of the storage containers for used nuclear fuel are mostly composed of thick materials, consideration should be given to property evaluation methodology and quantitative comparison. In this study, the mechanical properties of stainless steel material with canister application were evaluated according to the strain rate, and the crack resistance evaluation was also performed. It was confirmed the changes in strength and crack resistance according to the increase in strain rate and observed differences in microstructural hardening behavior.
        40.
        2023.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Liquid metal extraction (LME), a pyrometallurgical recycling method, is popular owing to its negligible environmental impact. LME mainly targets rare-earth permanent magnets having several rare-earth elements. Mg is used as a solvent metal for LME because of its selective and eminent reactivity with rare-earth elements in magnets. Several studies concerning the formation of Dy-Fe intermetallic compounds and their effects on LME using Mg exist. However, methods for reducing these compounds are unavailable. Fe reacts more strongly with B than with Dy; B addition can be a reducing method for Dy-Fe intermetallic compounds owing to the formation of Fe2B, which takes Fe from Dy-Fe intermetallic compounds. The FeB alloy is an adequate additive for the decomposition of Fe2B. To accomplish the former process, Mg must convey B to a permanent magnet during the decomposition of the FeB alloy. Here, the effect of Mg on the transfer of B from FeB to permanent magnet is observed through microstructural and phase analyses. Through microstructural and phase analysis, it is confirmed that FeB is converted to Fe2B upon B transfer, owing to Mg. Finally, the transfer effect of Mg is confirmed, and the possibility of reducing Dy-Fe intermetallic compounds during LME is suggested.
        4,000원
        1 2 3 4 5