Architectural Monuments have to overcome the challenge of time due to physical properties. The fundamental issue must be grounded in an understanding of history and art to overcome this challenge and make them sustainable. Many efforts to preserve the monuments through the 19th century and at the beginning of the 20th century to record them in scientific form were successful. To be aware of the meaning of the art and not to be ‘barbare’ anymore was behind the promotion of these activities. Above all, the 19th-century French architect Viollet-le-Duc contrasted the concept of barbarism with the concept of art and tried to redefine architecture as art. The ritual to escape ‘barbare’ played an important role in the end. This consciousness was also at work in the propaganda for the preservation of medieval architectural monuments in France, led by intellectuals such as Rodin. Also, the concept of ‘barbare’ served as an important yardstick whenever the cause of their loss was questioned while important monuments were destroyed in the First World War. From the viewpoint of Germany, Dehio was the pioneer of the preservation movement and documentation of monuments. The principle he advocated was preservation, not restoration. The historian Pevsner, who moved to England, also surveyed monuments in various parts of England and left them in the same format as Dehio. These facts show that architecture as art plays a fundamental role in the history of human life.
Although Changgyeong-gung was devastgated by Japanease invasion in 1592, it was restored during the reign of Gwanghaegun, had remembered of early Joseon danasty's architecturural order. It was destroyed several times by fire after that but was rebuilt i㎜edieately. There are Donggol-do and Donggol-dohyeong, so we can fine the change of architectures in Changgyeong-gung. Jibbokheon(集福軒) and Yeongchunheon(迎春軒) are marked in another location and architectures in Donggon-do and Donggon-dohyeong. The reason has been known that it was rebuilt after the fire in 1830. As a result of reviewing the record of birth of crown prince Sado and movement of coffin of King Jeong-jo in funeral ceremony, it was confirmed that notation of Jibbokheon and Yeongchunhyeon was misprinted. In particular, Yeongchunheon confirmed the possibility that the existing building was built by extending it while applying the asy㎜etrical building with four-purlins structure method during the reign of King Jeongjo, and that it was reconstructed by moving Yeonyeonghap when it was destroyed by fire 1830. And although now Jibbokheon and Yeongchunhyeon(延英閤) are connected, nothern part of Jibbokheon did not burn in the fire, so it was judged that original architectural plan were maintained until now. The current building north of Jibbokheon was built before 1695 (21st year of King Sukjong), which was first identified in the Gunggeolji(宮闕志), and there is a possibility that it may have been a part of Janggyeongmun(長慶門) inner corridor built before 1633. The present building north of Jibbokheon has great architectural significance in that it maintains the structural method of the early Joseon Dynasty which was often applied to buildings with a small scale of inner palace.
In this research, the case of modern wooden structures since 1950 with span of 30m or more was investigated and analyzed the construction status and structural planning characteristics of wooden large space architecture. As a result, wooden large space buildings have built around Asia, North America, and Europe, in which cases of ice skating stadiums with span of 30m to 60m were concentrated. In the case of baseball parks and football stadiums, even a span of about 165m was built in a wooden structure. In addition, it was found that the structural systems used in wooden large space structures were a funicular arch and truss structure, in that cases, funicular arch system consisting of radial arrangements was used in the examples exceeded 150m and the two way truss system was also used in long span wooden structures exceeding 100m. As the truss structure with a tie-rod or the flexure+tension structure was partially investigated, it can be seen that various timber structural systems need to be devised and researched. Also, It was investigated that a technique in which some members of the truss are made of steel or a composite member of steel and timber is also possible to develop
Since the beginning of the second Sino-Japanese war in 1937, the entire Korean Peninsula has entered a full-fledged wartime system. Japan enacted laws that strongly regulate the distribution of various resources for war, and the same was implemented in Joseon. In particular, as iron, copper, lead, tin, and aluminum were mobilized as raw materials for military supplies such as weapons, private distribution decreased significantly, which had a great impact on the construction industry. As the use of metal such as steel as building materials requires permission from the provincial governor, it has become difficult to supply and demand except for some military facilities. In addition, the Japanese Ministry of Commerce and Industry encouraged research and development and manufacturing to promote the so-called “substitute goods industry” to make up for the shortage of supplies. Products with improved performance through chemical treatment by injecting only a small amount of the same raw material than before or using alternative raw materials have been developed. It was intended to overcome the limitations of lack of raw materials through the chemical industry. In terms of building materials, various substitutes were produced due to the incorporation of petrochemicals and the use of synthetic resins. This trend continued even after the end of the war and served as one of the backgrounds for R&D and production of new materials without returning to the “substitute goods.”
국내 지진 발생의 빈도는 점차 증가하는 추세에 있으며, 포항지진(5.4 규모)은 진앙지와 주민 거주지가 가까워 피해 가 심각했는데 건물의 외장재가 떨어져 차량 등에 2차 피해가 발생하여 건물 외장재 안전에 대한 우려가 커지고 있는 실정이 다. 따라서 본 연구에서는 비구조 요소 중 커튼월의 동적 내진성능평가 규격에 대한 세계 각 국의 규준을 고찰하고 이 중에서 가장 널리 통용되는 AAMA501. 6-18에 따라 그 동적 내진성능을 평가하고자 한다. 또한, 본 연구에서 수행한 3축 동적 지진파 대응 가능 커튼월 시스템 실험을 통해 지진에 대한 2차 피해 방지를 위한 내진 커튼월 설계시공지침 개발에 기초적 자료로 제 공하고자 한다.