홍삼의 추출물인 50% ethanol extract, crude saponin, 그리고 lipid soluble fraction이 마우스 대식세포의 oxidative burst를 유발할 수 있는지 여부를 알아보고자 in vitro와 in vivo에 각각의 추출물을 처치하고 hydrogen peroxide 생산을 DCFH-DA를 이용한 형광분광광도법으로 측정하였다. 형광분광법에 의한 hydrogen peroxide의 측정을 최적화하기 위한 DCFH-DA의 농도는 3.2 μM이었고, oxidative burst를 유발하지 못하였지만, zymosan A로 유발한 경우에는 50% ethanol extract에서 가장 높은 hydrogen peroxide를 생산하였다. In vivo 실험에서는, lipid soluble extract에서만 유의하게 증가한(P<0.01) oxidative burst를 유발하였고, ginsenoside(saponin)가 어느 정도 포함되어 있는 50% ethanol extract와 crude saponin은 대조군에 비하여 유의하게 낮은(P<0.05) hydrogen peroxide를 생산하였다. 이는 ginsenoside가 마우스의 nitric oxide 생산을 억제한다는 다른 연구자들의 보고와 일치하는 결과이다. Oxidative burst를 유발한 lipid soluble extract에는 phenol계 화합물, polyacetylene계 화합물, 미량선분 등이 함유되어 있으므로 차후 연구를 통하여 과연 어느 성분이 hydrogen peroxide를 증가시키는지를 규명하는 것이 필요하다.
The aims of this study are to establish a stable isolation method of blastomeres from bovine early embryos and examine their developmental potential in vitro Early embryos were produced by maturation and fertilizaion in vitro of bovine follicular oocytes. Blastomeres were isolated from 2~8-cell embryos in +-, +-free PBS+EDTA after removing the zonae pellucidae Isolated blastomeres were cultured in CZB containing BOEC for upto 240 hpi. Cleavage rates of them were 18.5%(10 /54) in 1 /2 blastomeres, 33.3%(16/48) in 1/4 blastomeres and 34.2%(14 /41) in 1/8 blastomeres, respectively. The rates of blastocystic vesicle formed were 8.7%(4 /46) in 1/2 blastomeres, 26.6% (17/64) in 1/4 blastomeres and 10.3%(8 /78) in 1/8 blastomeres, respectively. Blastomeres developed into various types of blastocystic vesicles and trophoblastic vesicles as evidenced by the Hoechst 33258 staining and morphology. This results suggest that the isolation method used and subsequent culture of isolated blastomeres from bovine early embryos should be useful to obtain extra embryonic cells for various analyses such as PCR and putative ES cell culture.
The purpose of this experiment was to determine the effects of thiol compounds, -mercaptoethanol(-ME) and cystearrone with buffalo rat liver cell(BRLC) co-culture on the development and intracellular glutathione(GSH) concentrations of bovine embryos produced by in vitro inaturation(IVM) and in vitro fertilization(IVF). Bovine IVM /IVF embryos developed to 2~8 cell stage were co-cultured with BRLC in GRlaa with or without thiol compounds. The developmental rate beyond morulae stage in CRlaa containing 0, 10,25 and 50M -ME with BRLG were 63.0, 74.0, 72.3 and 77.1%, respectively. And the developmental rate with 0, 25, 50 and 75M cystearnine with BRLC were 69.6, 77.6, 81.0 and 76.8%, respectively. The developmental rate beyond morulae stage of GRlaa containing thiol compound with BRLG group was higher than that of control group. The intracellular GSH concentrations of blastocysts cultured for 5 days in GRlaa containing 0 and 50M -ME or cysteamine with BRLG were 81.2 and 86.4, 83.2 and 84.2pM, respectively. The intracellular GSH concentrations of blastocysts in GRlaa containing thiol compounds with BRLG was slightly higher than that of control group The cell numbers of blastocysts were not difference in all experimental groups. These results indicate that thiol compounds with BRLG co-culture was increased the percentage of developed into morulae and blastocysts, and intracellular GSII concentrations of blastocysts embryos.
The objective of this study was to investigate the effects of thiol compounds with bovine oviduct epithlial crlls(BOEC) co culture on development and intracellular glutathione(GSH) concentrations of bovine embryos derived from IVM /IVF oocytes. In experiment 1 and 2, embryos developed to 2~8 cell stage after in vitro fertilization were co-cultured with BOEC in CRaa with or without -mercaptoethanol(-ME) and cysteamine. The percentage of embryos that developed to morulae and blastocysts in 0,10, 25 and 5OM -ME with BOEC was 48.1, 64.0, 72.9 and 75.9%, respectively. Twenty-five and 5OM -ME groups were significantly higher than in 0 and 1OM - -ME groups(PM cysteamine with BOEC was 50.0, 53.2, 72.0 and 66.7%, respectively. Fifty M cysteamine group was significantly higher than any other groups (Paa with 0 and 5OM -ME or cysteamine were 68.5, 77.8, 78.7 and 80.0pM, respectively. Fifty M -ME group was significantly higher than that of control(P<0.05), but cysteamine group was not. Cell numbers of blastocysts were not difference in all experimental groups. These experiments indicate that -ME and cysteamine with BOEC co-culture can affect the development and intracellular GSH concentrations of bovine embryos produced by IVM /IVF docytes.
To improve the efficiency of production of cloned embryos and animals by nuclear transplantation in the rabbit, the effect of cell cycle of donor nuclei and type of recipient cytoplasm on the in vitro developmental potential and production efficiency of offspring was determined. The embryos of 16-cell stage were collected from the mated does at 48h post-hCG injection and they were synchronized to G phase of 32-cell stage. The oocytes collected at 14h post-hCG injection were freed from cumulus cells and then enucleated. One group of the enucleated cytoplasms was activated by electrical stimulation prior to injection of donor nucleus, and the other group was not pre-activated. The separated Gphase blastomeres of 32-cell stage embryos were injected into the perivitelline space of recipient cytoplasms. After culture for 20h post-hCG injection, the nuclear transplant oocytes were electrofused and activated by electrical stimulation and the fused nuclear transplant embryos were co-cultured for 120h and the nuclear transplant embryos developed to blastocyst stage were stained with Hoechst 33342 dye and their blastomeres were counted. Some of the nuclear transplant embryos developed in vitro to 2- to 4-cell stage were transferred into the oviducts of synchronized recipient does. The electrofusion rate was similar between the types of donor nuclei and recipient cytoplasms used. However, the nuclear transplant embryos using G phase donor nuclei were developed to blastocyst at higher rate(60.3%) than those using S phase ones(24.7%). Also, when non-preactivated oocytes were used as recipient cytplasms, the develop-mental rates of nuclear transplant embryos to blastocysts were significantly(P< 0.05) higher(57.1%) than those using preactivated ones(20.8%). The cell counts of nuclear transplant embryos developed to blastosyst stage were increased signficantly(P<0.05) more in the non-preactivated recipient cytoplasm(163.7 cells), as compared whit the preactivated recipient cytoplasm(85.4 cells), A total of 49 nuclear transplant embryos were tranferrid into 5 recipient does, of which two offsprings were produced from a foster mother 31 days after embryo transfer. these results showed that the blastomeres of G1 phase and non-preactivated oocytes might be utillzed efficiently as donor nuclei and recipient cytoplasms in the nuclear transplant procedure, thought the offspring production remained still low.
The objectives of the present study were improvements in the efficiency of developmental rates to morula and blastocyst stages to produce a large number of genetically identical nuclear transplant embryos. The oocytes collected from slaughterhouse ovaries were matured for 24 h and then enucleated and cultured to allow cytoplasmic maturation and gain activation competence. And then the donor embryos were treated for 12 h with 10 g /ml nocodazole and 7.5 g /ml cytochalasin B to synchronize the cell cycle stage at 26 h after the onset of culture. The blastomeres were transferred into the perivitelline space of the enucleated nocytes and blastomeres and oocytes were fused by electrofusion. The cloned embryos were then cultured in various conditions to allow further development. The age of the recipient(30 vs 40 h) had no significant effect on the fusion rates(82.4 vs 82.1%) and the developmental rates to morula /blastocyst(9.8 vs 11.0%). Effect of Nocodazole treatment on the donor cell cyle synchronization to improve the developmental rates of bovine nuclear transplant embryos was significantly higher than control group(21.4 vs 10.1%, p<0.05). Significant differences were in the percentage of fusion rates(72.9,77.1vs 61.9%) in three types of fusion medium(PBS(+), mannitol and sucrose, p<0.01). The developmental rates of bovine nuclear transplant embryos appeared to be highest in mSOF medium under 5% 0 condition, but no significant differences were found when compared with TCM199-BOEC and mSOF under two different oxygen ratio(5 and 20%).