복숭아순나방(Grapholita molesta)은 핵과류과실에 일차 피해를 주는 해충이다. 이를 해결하기 위해 종합적병해충관리 [IPM]의 일환으로 써 전세계적으로 교미교란제가 농가에 적용되고 있다. 왁스, 폴리에틸렌 튜브, 에어로졸 형태의 다양한 교미교란제가 상업화되었다. 이 연구에서 는 복숭아순나방 성페로몬 방출기로써 에스테르왁스와 폴리프로필렌(PP)필름백을 구성하는 방출기를 기존의 파라핀 왁스와 폴리에틸렌(PE) 재 질의 필름과 비교하여 페로몬의 방출거동을 분석했다. PE재질의 필름백은 성페로몬의 방출이 불규칙한 반면, PP필름백에서 성페로몬은 시간에 따라 일정하게 방출하는 패턴을 얻었다. 이러한 결과를 토대로 Japan 왁스_PP 필름 방출기(Japan_PP)를 제작하였고, 약 5개월 동안 복숭아과 수원에 적용한 결과 98% 이상의 교미교란 효과가 검증되었다.
Porous W with spherical and directionally aligned pores was fabricated by the combination of sacrificial fugitives and a freeze-drying process. Camphene slurries with powder mixtures of WO3 and spherical PMMA of 20 vol% were frozen at −25 oC and dried for the sublimation of the camphene. The green bodies were heat-treated at 400 oC for 2 h to decompose the PMMA; then, sintering was carried out at 1200 oC in a hydrogen atmosphere for 2 h. TGA and XRD analysis showed that the PMMA decomposed at about 400 oC, and WO3 was reduced to metallic W at 800 oC without any reaction phases. The sintered bodies with WO3-PMMA contents of 15 and 20 vol% showed large pores with aligned direction and small pores in the internal walls of the large pores. The pore formation was discussed in terms of the solidication behavior of liquid camphene with solid particles. Spherical pores, formed by decomposition of PMMA, were observed in the sintered specimens. Also, microstructural observation revealed that struts between the small pores consisted of very fine particles with size of about 300 nm.
γ-Aminobutyric acid (GABA)-containing salt was prepared by crystallization of a mixture of salt water from deep sea and fermentation broth by lactic acid bacteria that contained GABA converted from glutamic acid. Salt from deep sea water has a lower sodium content but higher calcium, potassium and magnesium contents than commercial salt. Instead of monosodium glutamate (MSG), glutamic acid was used for solving the residual MSG problem. Fermentation by a lactic acid bacterium converted 90% of added glutamic acid (5%, w/v) to GABA, and continuous production of colorless fermentation broth containing more than 3% (w/v) GABA was achieved by using an activated carbon. Mixtures of salt water and fermentation broths with various GABA concentrations were co-crystallized and the GABA content was analyzed. This analysis showed that more than 90% of GABA from broth was adsorbed to salt. The appearance and surface of this prepared GABA-containing salt were examined with an image analyzer and scanning electron microscope. No difference was found with commercial sun-dried salt and no separated particles were detected, which indicates that the co-crystallization process used is suitable for the production of GABAcontaining salt.
The alternative advanced lead-acid battery is one of the promising ultrabattery. The lead-carbon battery is also reusable battery consisted of positive electrodes, negative electrode and Electrolyte. Currently, numerous research efforts are performing on activated carbon used as the novel cathode materials. In this study, we have used graphite sheet coated P60 carbon as a cathode material. Graphite electrode is different form used in the normal lead-carbon batteries. It will be expected to increase the conductivity and weigh light. Through charge-discharge experiment and EIS, battery performance analysis were compared with grid form negative electrode. After that, SEM, RAMAN and XRD analyses were studied.
Sulfonated poly(arylene ether sulfone) (SPAES) random copolymers have been perceived as alternatives to perfluorinated sulfonic acid ionomers used as polymer electrolyte membranes for fuel cells. SPAES copolymers are suffering from degradation under harsh fuel cell operation conditions. One solution to overcome the decomposition issue is to fill SPAES copolymers into polymeric support films (e.g., poly(tetrafluoro ethylene), PTFE) with interconnected porous structures. It is difficult to fill the SPAES copolymers dissolved in polar aprotic solvents into PTFE support films owing to their different surface energies. In this study, a SPAES nanodispersion in a water-alcohol mixture is used to make defect-free pore-filling membranes where poly(ethylene glycol) oligomers are added to induce advanced morphologies for fast proton conduction.
본 연구에서는 Montmorillonitrile(MMt)계 무기물을 이용하여 SPAES고분자에 첨가한 후 제조된 용액을 이용하여 복합막을 제조하였으며 특성평가가 진행되었다. 개질되지 않은 MMt의 경우 고분자에 첨가되었을 경우 실리케이트층 구조로 인해 메탄올 투과도는 감소하나 이온전도도가 감소되는 문제점을 가지고 있으므로 본 연구에서는 MMt를 유기화 시켜 최적화된 메탄올 투과도와 이온투과도를 가지는 무기물을 제조하고자 하였으며 최종적으로 제조된 분리막의 특성평가를 진행하였다.
고분자 전해질 막의 성능을 개선하고자 사용된 대표적인 무기물인 solid acid가 첨가된 복합막의 경우 고온에서 높은 열안정성을 나타내며 친수성이 강해지는 장점을 나타내지만 물에 녹는 단점을 가지고 있다. 그러므로 본 연구에서는 phosphotungstic acid(PWA)의 이온전도성을 증가시키며 물에 용해되는 성질을 제거하기 위하여 실리카 입자를 sol-gel법을 이용하여 술폰산기와 아민그룹을 도입시킨 입자를 제조한 후 sulfonated poly(arylene ether sulfone)(SPAES) 고분자에 첨가하여 복합막을 제조하였으며 특성평가가 이루어졌다.
에폭시 수지는 기계적 물성, 내약품성, 치수 안정성 등이 우수하기 때문에 고기능 소재로서 수요가 증가하고 있다. 이에 따라 에폭시 수지 제조공정에서 발생하는 부산물의 양도 증가하여 부산물 내의 원료 물질 회수에 대한 관심이 높아지고 있다. 본 연구에서는 원료물질을 회수하는 증류/분리막 복합 공정에 적용할 수 있는 탈수용 복합막을 연구하였다. 실리카-지르코니아 졸에 α-알루미나를 분산시킨 코팅용액과 실리카 졸을 이용하여 Dip-coating법으로 실리카 복합막을 제조하였다. 에폭시 공정 부산물인 Epichlorohydrin/IPA/H2O을 이용하여 투과증발 실험한 결과 복합막은 총투과도 0.1∼0.7 kg/m²⋅h, 물의 선택도 50∼110를 나타내었다.
A novel cation exchange membrane consisting of polyvinylidene difluoride (PVDF) was prepared for the application of vanadium redox flow battery (VRFB). PVDF used as supporter has considerably high mechanical strength and an intrinsic hydrophobicity. For the successful preparation of the membrane, PVDF powders were modified by potassium hydroxide, which increased the hydrophilicity of PVDF powders. Modified PVDF were grafted with styrene sulfonic acid (SSA) using benzoyl peroxide (BPO) as initiative. The cross-sectional morphology and structure of PVDF/SSA was confirmed by scanning electron microscopy (SEM) and FT-IR. The membrane was characterized by water uptake, dimensional change, ion conductivity and ion exchange capacity (IEC) and cell performance of Vanadium Redox Flow Battery (VRFB) with Nafion 212.
극성 기체인 CO2를 분리하기 위해 UiO-66과 PVC-g_POEM을 사용하여 Membrane을 만들었다. UiO-66(MOFs)는 높은 수분 안정성뿐 아니라, 강산 및 강염기 수용액 하에서도 안정된 구조를 유지한다. 또한 다양한 용매에 사용할 수 있는 장점을 가지고 있다. 본 연구에서는 PVC-g-POEM 고분자 매트릭스에 높은 비표면적을 갖는 UiO-66 입자를 분산하여 Mixed Matrix Membrane을 제조하였다. 분리막 두께에 변화시키며, 다양한 이성분계 혼합기체에 대한 투과 실험을 실시하였다. 합성된 MMM의 결정상은 XRD로, 두께 및 표면 등은 SEM을 통해 분석하였으며, 기체 투과 실험에서 투과된 기체의 조성은 GC를 이용하여 분석하였다.
PEBAX[poly(ether-block-amide)는 열가소성인 탄소체로 부드럽고 유연한 폴리에테르와 단단한 폴리아마이드의 블록으로 이루어졌다. 두 compounds는 기체 분리막에 있어 필수적인 특성을 가지고 있다. 폴리에테르는 높은 투과도를 제공하고 폴리아마이드는 기계적 강도가 좋고 기체 선택성도 우수하다. GO(Graphene oxide)는 흑연으로부터 제조하여 재료의 습득이 용이할 뿐 아니라 기체투과에 선택적 배리어로서 작용한다. 본 연구에서는 GO에 열을 가한 뒤, 함량을 달리한 PEBAX-GO 복합막을 제조하고, 제조된 막의 물리화학적 특성, 기체투과도, 선택성에 대해 연구하였다.
이산화탄소를 분리하기 위한 한 방법으로 고분자 기체 분리막을 이용한 기술이 발전하고 있다. 다양한 폴리머 막 재료 중에서도 폴리이미드(PI) 는 우수한 열 및 기계적 특성, 좋은 화학적 안정성과 높은 가스 수송 특성 을 가지고 있다. 하지만 고분자 분리막은 아직 낮은 투과, 선택성을 가지고 있기 때문에 이를 높이기 위해 많은 연구가 이루어지고 있다. 한편 고무상 고분자인 폴리에틸렌글리콜 (PEG)은 이산화탄소에 대한 높은 친화성으로 우수한 이산화탄소 분리성능을 가지고 있다. 본 연구에서는 높은 자유 체적을 가지는 durene group을 포함한 PI과 PEG를 공중합 시켜 높은 물성과 이산화탄소 분리성능을 가지는 분리막을 제조하였다.
본 연구는 둘 이상의 기체혼합물에서 높은 이산화탄소 분리성능을 위해 Poly(ethylene glycol)로 개질된 Graft copolymer로 film을 제조 하였다. 높은 기체 선택성을 가져 분리막으로 널리 사용되는 Polysulfone을 클로로메틸화하고, 구조적으로 이산화탄소에 높은 친화성을 가지는 Poly(ethylene glycol)을 사용하였다. 분자량이 5000인 Poly ethylene glycol을 사용하였고 합성된 공중합체는 TGA와 DSC로 고분자의 열적특성을 확인하고 FT-IR 과 1H-NMR을 이용하여 화학구조를 분석하였다. Time lag 기계를 사용하여 Film의 기체투과 성능을 조사하였으며, Poly(ethylene glycol)의 분자량에 따른 효과를 알아보았다.
본 연구에서는 bulky하면서 큰 자유체적을 가지는 플루오렌기를 도입하여 새로운 폴리술폰(PSf)고분자를 합성하고 해당 고분자에 PEG를 공중합시켜 분리막을 제조하였다. PEG 특성 피크 (2950 cm−1,1110cm−1)의 확인을 통해 PEG가 도입을 확인하였으며. PSf-PEG 분리막이 단일 유리전이온도를 가지는 것을 확인 하였다. 분자량 6000 PEG가 10 mol%가 포함된 PSf-PEG분리막에서만 60 °C 부근에서 용융점이 나타났다. PSf-PEG 분리막의 CO2기체투과도는 PEG함량에 따라 감소하는 거동을 보였지만 CO2/N2선택도는 증가하는 경향을 보였다. 비슷한 함량에서 PEG의 분자량이 증가함에 따라 CO2투과도는 증가하는 경향을 보였다.
가교는 사슬 간격과 사슬 내 외부의 유동성을 감소시켜 분리막의 선택도, 내화학성 등을 증가시키는 것 과 같이 기체분리막의 성능을 향상시키기 위한 여러 방법 중 하나이다. 본 연구에서는 지방족 가교제 중 선형가교제를 사용하여 폴리이미드 분리막의 기체 분리 성능을 높이고자 하였고, 선형가교제의 알킬 길이에 따른 영향 또한 비교 분석 하였다. 가교 여부는 이미드 그룹의 특성피크 증가와 이미드 그룹의 특성피크 감소를 통해 확인하였다. 기체분리특성은 CH4, N2, O2, CO2 단일 기체에 대해서 측정하였으며 가교제 및 가교도에 관계없이 가교 후 기체의 확산 감소로 인해 네 기체 모두 투과도가 감소하였다. 반면 CO2/CH4, O2/N2 기체상의 선택도는 가교 전보다 향상된 결과를 나타내는 것을 확인하였다.
고분자 분리막을 통한 기체 분리는 기체의 용해 및 확산으로 진행되며 따라서 기체 분리 성능은 기체의 용해도 또는 확산도에 좌우된다. 이산화탄소와 같은 극성 기체의 용해도를 향상시키기 위해 acylation, bromination, sulfonation과 같은 화학적 개질을 통한 연구들이 진행되었으며 또한 술폰산기를 가지는 고분자에 금속이온을 치환시켜 이산화탄소 선택도를 증가시킨 연구가 보고되었다. 본 연구에서는 biphenol기와 fluorene기를 가지는 Sulfonated Poly(arylene ehter sulfone) (SPAES) 고분자 분리막을 제조하였으며 술폰화 정도와 치환된 극성 그룹의 종류에 따른 기체투과특성을 알아보고자 하였다.
막 접초기용 최적의 중공사막을 탐색하기 위하여 기공구조 및 기공도를 제어하여 중공사막을 상전이법으로 제조하였다. 상전이법으로 제조한 중공사막의 기공구조는 도프용액의 용매와 내외부응고제의 상호작용에 의해 결정되며, 용매와 응고제를 달리하여 제조한 중공사막의 특성을 비교하였다. SEM 이미지를 통해 기공구조를 확인하였으며, 기체투과도 측정실험을 통해 기공도 및 기공크기를 계산하였다. 막 젖음 현상을 방지하기 위해 금속산화물의 친수성표면을 소수성으로 개질하였으며, 최소침투압력을 측정하여 기공도 및 기공구조에 따른 소수성 특성을 비교하였다. 또한 실제 이산화탄소 흡수 실험을 통해 기공도와 기공크기가 흡수특성에 미치는 영향을 분석하고 최적화된 중공사막을 탐색하였다.