In this work, ultra-fine calcium oxide (CaO) powder derived from eggshells is used as the starting material to synthesize mineral trioxide aggregate (MTA). The prepared CaO powder is confirmed to have an average particle size of 500 nm. MTAs are synthesized with three types of fine CaO-based powders, namely, tricalcium silicate (C3S), dicalcium silicate (C2S), and tricalcium aluminate (C3A). The synthesis behavior of C3S, C2S and C3A with ultra-fine CaO powder and the effects of C3A content and curing time on the properties of MTA are investigated. The characteristics of the synthesized MTA powders are examined by X-ray diffraction (XRD), field emission-scanning electron microscope (FE-SEM), and a universal testing machine (UTM). The microstructure and compressive strength characteristics of the synthesized MTA powders are strongly dependent on the C3A wt.% and curing time. Furthermore, MTA with 5 wt.% C3A is found to increase the compressive strength and shorten the curing time.
Titanium dioxide (TiO2) is a typical inorganic material that has an excellent photocatalytic property and a high refractive index. It is used in water/air purifiers, solar cells, white pigments, refractory materials, semiconductors, etc.; its demand is continuously increasing. In this study, anatase and rutile phase titanium dioxide is prepared using hydroxyl and carboxyl; the titanium complex and its mechanism are investigated. As a result of analyzing the phase transition characteristics by a heat treatment temperature using a titanium complex having a hydroxyl group and a carboxyl group, it is confirmed that the material properties were different from each other and that the anatase and rutile phase contents can be controlled. The titanium complexes prepared in this study show different characteristics from the titania-formation temperatures of the known anatase and rutile phases. It is inferred that this is due to the change of electrostatic adsorption behavior due to the complexing function of the oxygen sharing point, which crystals of the TiO6 structure share.
Iron oxides currently attract considerable attention due to their potential applications in the fields of lithiumion batteries, bio-medical sensors, and hyperthermia therapy materials. Magnetite (Fe3O4) is a particularly interesting research target due to its low cost, good biocompatibility, outstanding stability in physiological conditions. Hydrothermal synthesis is one of several liquid-phase synthesis methods with water or an aqueous solution under high pressure and high temperature. This paper reports the growth of magnetic Fe3O4 particles from iron powder (spherical, <10 μm) through an alkaline hydrothermal process under the following conditions: (1) Different KOH molar concentrations and (2) different synthesis time for each KOH molar concentrations. The optimal condition for the synthesis of Fe3O4 using Fe powders is hydrothermal oxidation with 6.25 M KOH for 48 h, resulting in 89.2 emu/g of saturation magnetization at room temperature. The structure and morphologies of the synthesized particles are characterized by X-ray diffraction (XRD, 2θ = 20°–80°) with Cu-kα radiation and field emission scanning electron microscopy (FE-SEM), respectively. The magnetic properties of magnetite samples are investigated using a vibrating sample magnetometer (VSM). The role of KOH in the formation of magnetite octahedron is observed.
Magnetic 0-D Nd2Fe14B powders are successfully fabricated using 1-D Nd2Fe14B nanowire formed by an efficient and facile electrospinning process approach. The synthesized Nd-Fe-B fibers and powders are investigated for their microstructural, crystallographic, and magnetic properties according to a series of subsequent heat treatments. Each heat-treatment process leads to the removal of organic impurities and the formation of the respective oxides/composites of Nd, Fe, and B, resulting in the formation of Nd2Fe14B powders. Nd-Fe-B fibers exhibit the following magnetic properties: The coercivity (Hci) of 3260 Oe, a maximum magnetization at 3T of 109.44 emu/g, and a magnetization remanence (Mr) of 44.11 emu/g. This process easily mass produces hard magnetic Nd2Fe14B powders using a 1-D synthesis process and can be extended to the experimental design of other magnetic materials.
Additively manufactured metallic components contain high surface roughness values, which lead to unsatisfactory high cycle fatigue resistance. In this study, high cycle fatigue properties of selective laser melted Ti-6Al- 4V alloy are investigated and the effect of dry-electropolishing, which does not cause weight loss, on the fatigue resistance is also examined. To reduce the internal defect in the as-built Ti-6Al-4V, first, hot isostatic pressing (HIP) is conducted. Then, to improve the mechanical properties, solution treatment and aging are also implemented. Selective laser melting (SLM)-built Ti64 shows a primary α and secondary α+β lamellar structure. The sizes of secondary α and β are approximately 2 μm and 100 nm, respectively. On the other hand, surface roughness Ra values of before and after dry-electropolishing are 6.21 μm and 3.15 μm, respectively. This means that dry-electropolishing is effective in decreasing the surface roughness of selective laser melted Ti-6Al-4V alloy. The comparison of high cycle fatigue properties between before and after dry-electropolished samples shows that reduced surface roughness improves the fatigue limit from 150 MPa to 170 MPa. Correlations between surface roughness and high cycle fatigue properties are also discussed based on these findings.
Fe3O4/SiO2/YVO4:Eu3+ multifunctional nanoparticles are successfully synthesized by facile stepwise sol-gel processes. The multifunctional nanoparticles show a spherical shape with narrow size distribution (approximately 40 nm) and the phosphor shells are well crystallized. The Eu3+ shows strong photoluminescence (red emission at 619 nm, absorbance at 290 nm) due to an effective energy transfer from the vanadate group to Eu. Core-shell structured multifunctional nanoparticles have superparamagnetic properties at 300 K. Furthermore, the core-shell nanoparticles have a quick response time for the external magnetic field. These results suggest that the photoluminescence and magnetic properties could be easily tuned by either varying the number of coating processes or changing the phosphor elements. The nanoparticles may have potential applications for appropriate fields such as laser systems, optical amplifiers, security systems, and drug delivery materials.
ZrB2 ceramic and ZrB2 ceramic composites with the addition of SiC, WC, and SiC/WC are successfully synthesized by a spark plasma sintering method. During high-temperature oxidation, SiC additive form a SiO2 amorphous outer scale layer and SiC-deplete ZrO2 scale layer, which decrease the oxidation rate. WC addition forms WO3 during the oxidation process to result in a ZrO2/WO3 liquid sintering layer, which is known to improve the antioxidation effect. The addition of SiC and WC to ZrB2 reduces the oxygen effective diffusivity by one-fifth of that of ZrB2. The addition of both SiC and WC shows the formation of a SiO2 outer dense glass layer and ZrO2/WO3 layer so that the anti-oxidation effect is improved three times as much as that of ZrB2. Therefore, SiC- and WC-added ZrB2 has a lower two-order oxygen effective diffusivity than ZrB2; it improves the anti-oxidation performance 3 times as much as that of ZrB2.
연약지반이 두껍고 다양한 지층으로 구성된 지역에 건설되는 단일형 현장타설말뚝 교량은 다양한 지층을 통해서 단일형 말뚝으로 입력되는 지반운동에 대해서 내진안전성을 확보하는 것이 중요하다. 본 연구에서는 설계지반운동에 부합되는 다수의 인공합성지진을 생성하여 이를 암반의 입력지반으로 하여 지반해석을 수행하여 각 지층에서의 지반가속도이력을 산정하였다. 이 가속도이력을 이용하여 각 지층의 지반을 등가스프링으로 모델화하고, 각 지층에서의 가속도시간이력을 입력지반 운동으로 하는 다지점 가진 지진해석을 수행하였다. 연약층의 비선형거동특성으로 입력지반운동의 세기는 크게 증폭되지 않아서 교량은 탄성영역 내에서 거동하였다. 한편, 특정 지층에서 산정된 가속도이력을 모든 지반스프링에 동시에 입력하면 응 답이 감소하였다. 따라서, 다지점가진 해석을 수행하지 않으면 이러한 형식의 교량의 내진성능을 과대평가할 수 있다.
본 논문에서는 OpenSees 프로그램을 이용한 콘크리트 교량의 지진취약성 분석 방법에 대한 고찰을 제시한다. 교각 및 휨 부재 분산 비선형(distributed plasticity) 요소를 적용한 해석모델을 활용하여 지진에 대한 응답을 구하고 이를 통계적으로 처리하여 확률론적 지진취약성 분석을 수행한다. 응답 통계는 세기가 같은 지진파의 집단을 단계별로 scaling하는 stripe 방 법과 다양한 세기를 가진 지진파 집단을 선정하는 cloud방법을 적용하고 이 두 방법에 의한 분석결과의 차이를 비교한다. 한계 상태에는 교각의 휨변형과 교좌장치의 변위를 기준으로 산정한 다단계 한계상태를 적용하고, 여러 가지 한계상태를 취합한 시스템 취약성을 도출한다. 지진응답의 통계적 처리 방법과 교량의 손상 정의가 지진취약성 곡선에 주는 영향을 고찰한다.
본 논문에서는 폭발하중을 받는 철근콘크리트 슬래브의 비선형 해석을 위한 개선된 수치 모델을 제안한다. 제안된 모델은 2축 응력 상태를 반영한 등가 강도에 의해 정의된 응력-변형률 관계를 사용하여 응력 상태를 직접 결정하는 변형률 속도 의존 이등방성 구성 모델을 다룬다. 또한, 균열 발생 후 콘크리트와 철근 사이의 부착 슬립이 점차 확대되어 소성힌지 영역으로 집중된다. 2축 응력 상태에서 콘크리트의 균열 방향은 주응력 방향에 따라 달라지므로 이를 고려한 부착 슬립 모델을 해석에 도입하였다. 해석 모델의 검증을 위해 수치해석과 실험결과의 상관관계 연구(correlation studies)가 수행되었다. 해석 결과는 재료모델의 2축 거동과 부착 슬립의 영향을 고려하는 것이 해석결과의 정확성 향상에 중요함을 보여주며 제안된 해석 모델이 철근콘크리트 슬래브 부재의 폭발해석에 효과적으로 사용될 수 있음을 확인하였다.
본 연구는 헤테로코어 광파이버 센서를 활용하여 콘크리트 내부에서 발생되는 변형률의 측정을 통해 콘크리트의 프리스트레스를 직접 평가할 수 있는 새로운 매립형 센서모듈 개발을 최종 목표로 하고 있다. 이를 위하여 노출형 센서모듈을 이용한 성능발현 실험결과는 가력속도 0.12, 1.80mm/min일 때 52.1, 2.6sec로 최대 약 19배의 계측 지연현상이 발생하였다. 계측 지연현상은 구조물의 실시간 변화 상태를 계측하지 못하는 경우로 실시간 계측이 가능한 센서모듈의 개발을 위해서 추가실험이 필요한 것으로 판단하였다. 계측 지연현상 원인규명 실험은 3가지의 실험을 계획하였으며, 실험결과는 마찰저항에 의한 계측 지연이 지배적으로 확인되었다. 마찰이 제거된 장치를 이용한 센서모듈의 실험결과에서는 계측 지연현상이 나타나지 않은 것으로 확인되었다.
본 논문에서는 해석결과를 보정하여 고층 건축물의 기둥축소 예측값과 실제값 간의 오차를 최소화하기 위한 해석보정법이 제안되었다. 이를 위하여 41층 규모의 철근 콘크리트 건물에 대한 시공단계해석이 수행되었으며, 해석결과는 기둥과 코어로 나뉘어 네 가지의 가정된 계측결과들과 비교되었다. 해석보정은 기둥에서는 오차 한계를 넘어서는 시공단계에서 코어에서는 모든 시공단계에 적용되었으며, 해석이 보정된 이후에도 지속적으로 오차가 발생하므로 해석보정이 자주 수행될수록 오차는 감소하였다. 이러한 과정을 통하여 제안된 해석보정 방법을 적용함으로써 장기적인 축소값이 실제값과 유사하게 예측될 수 있음을 확인하였다.
본 논문에서는 AISC 표준 단면을 설계 변수로 하는 캔틸레버 타입 헬리데크 모델의 유전 알고리즘 최적설계를 소개한다. AISC 표준 단면을 단면 형상별로 분류하고 단면적 순으로 정렬한 후 정수 단면 번호를 부여하여 설계 변수로 최적설계를 수행하였다. 이 과정을 통하여 이산화된 설계 변수를 가지는 최적설계 문제를 해결하기 위해 유전 알고리즘을 적용하였다. 또한, 제약조건으로 허용응력 및 허용응력비 검사 조건을 모두 고려하여 구조물의 구조 안정성을 고려한 설계를 수행하였다. 최적설계 과정중 매 반복계산 마다 수행되는 구조해석 시간을 단축시키기 위해 선형 중첩법을 사용하였고, 이를 통해 구조 해석 시간을 약 75% 감소시킬 수 있었다. 또한 헬리데크 최적설계의 경량 효과를 높이기 위해 부재 그룹 세분화를 하였고, 그 결과를 선행 연구 모델, 기존의 부재 그룹 모델과 비교하였다. 그 결과 선행연구 대비 약 30톤의 부재를 절감할 수 있었으며, 구조적으로도 보다 안전한 헬리데크 설계를 얻을 수 있었다.
구조물의 상태를 조기에 파악하기 위한 구조물 건전도 모니터링 연구와 건물의 정보를 수집하여 에너지를 효율적으로 관리해 주는 건물에너지관리시스템에 관한 연구가 활발히 진행 중이다. 본 연구에서는 기존 모니터링 시스템 연구가 건설, 센싱, ICT 기술이 융합된 첨단 기술임에도 불구하고 고가의 센서와 전문적인 기술력이 요구되어 적용 범위가 제한된다는 한계를 극복하기 위하여 싱글보드컴퓨터 중 가장 널리 쓰이는 라즈베리파이와 저전력으로 장거리의 통신이 가능한 로라 모듈, 고성능의 보급형 가속도계를 활용하여 장기간으로 건물의 모니터링이 가능한 무선 엣지 컴퓨팅 시스템을 구축하였다. 또한 라즈베리파이에 분산처리 알고리즘을 탑재함으로써 실시간으로 취득되는 방대한 양의 가속도 데이터 중 의미있는 데이터만을 취득하였으며 와이파이 통신으로 취득한 전체의 로우데이터와 비교함으로써 본 시스템으로부터 취득된 데이터의 정밀성을 검증하였다.
이 논문에서는 수직방향 지진입력에 의한 지반-구조물 상호작용 효과가 기초 종류에 따라 LNG 저장탱크의 지진응답에 미치는 효과를 분석하였다. 이를 위하여 직경 71m인 LNG 탱크와 기반암 위 점토지반의 깊이가 30m인 지반조건을 고려하였다. 그리고 기초형식으로 네 가지(얕은 기초, 말뚝지지 전면기초, 말뚝기초(지표면 접촉식, 부유식)를 고려하였다. 지반의 비선형성은 자유장 지반에 대하여 등가선형화기법으로 고려되었다. 또한, 말뚝기초의 시공과정에서 발생하는 동다짐 효과에 대해서도 분석하였다. SSI 해석을 위하여 진동수영역 해석프로그램인 KIESSI-3D를 이용하였다. 지반-구조물 상호작용 해 석을 통해 LNG 저장탱크의 외조 벽체 쉘의 응력을 구하였다. 해석결과로부터 다음과 같은 결론을 얻을 수 있었다: (1) 얕은 기초에서 외조탱크의 수직응력은 SSI 효과로 인하여 고정기초응답 보다 작았다. (2) 말뚝으로 지지된 기초에서 말뚝으로 인해 기초의 수직강성이 커지고 방사감쇠가 작아질 수 있기 때문에 SSI 응답이 고정기초응답 보다 커질 수 있다. (3) 동다짐 효과는 수직지진에 의한 LNG 저장탱크의 응답에 미치는 영향이 매우 작았다.
PS 강거더의 비선형, 비탄성 거동에 대한 편향부 효과를 조사하기 위하여 PS 시스템의 거동특성에 대한 실험적 및 이론적 연구를 수행한다. 이를 위하여 H빔, 편심을 갖는 직선 케이블, 정착부, 그리고 편향부를 갖는 4개의 시험체를 제작하여 2점 하중에 의한 파괴거동시험을 수행한다. 또한, 편향부가 없는 경우와 등간격으로 3개의 편향부가 설치된 경우의 PS 시스 템에 대하여 면내 변형이론을 새로이 정식화하고 symbolic 연산을 수행할 수 있는 메스메티카를 이용하여 비선형해를 구한다. 실험 및 이론적 연구의 타당성을 검증하기 위하여 박벽보요소, 강성이 매우 큰 보요소, 그리고 케이블-트러스요소로 구성되는 유한요소모델을 구축하고 비탄성해석을 수행하여 그 결과를 실험결과 및 해석해와 비교한다. 결과적으로 외부에 설치된 비부착 편향부로 인하여 H빔의 횡변위가 강하게 구속되어 PS 시스템의 강성 및 파괴강도는 편향부가 없는 경우와 비교할 때 크게 증가한다.
유한요소법(finite element method)은 다양한 분야에서 재료의 역학적 거동을 더욱더 현실적으로 해석하고 예측하는 방법으로 다양한 분야의 제품 개발에 적용되고 있다. 하지만 섬유배향과 변형률 속도가 역학적 특성에 영향을 미치는 유리섬유 강화 플라스틱 복합재료에 관한 수치해석을 이용한 접근 방법은 현재까지 다소 어려움이 있다. 본 연구의 목적은 고분자, 고무, 금속 등과 같은 다양한 복합재료를 위한 선형, 비선형 다중스케일 재료 모델링 프로그램인 Digimat의 수치해석 재료 모델을 활용하여 유리섬유 강화 플라스틱 복합재료의 역학적 특성을 정의하고 검증하는 것에 있다. 또한 이를 통해 좀더 현실 적으로 고분자 복합재료의 거동을 예측하고자 한다. 이를 위해 다양한 고분자 중 30wt%의 단섬유 질량 비율을 갖는 폴리부 틸렌 텔레프탈레이트(polybutylene terephthalate, PBT)의 섬유배향과 변형률 속도에 따른 인장 특성을 참고문헌을 통해 조사하였다. 또한 Moldflow 프로그램을 사용한 사출해석을 통해 유리섬유 배향 정보를 계산하였으며 이를 매핑(mapping) 과 정을 통해 유한요소 인장 시편 모델에 전달하였다. 대표적인 유한요소 상용 프로그램 중 하나인 LS-DYNA는 유리섬유 배향과 변형률 속도에 따른 복합재료의 인장 특성을 연구하기 위해 Digimat과의 연성해석(coupled analysis)에 활용되었다. 그리고 유리섬유 강화 플라스틱 복합재료를 해석하기 위한 LS-DYNA의 다양한 비등방성(anisotropic) 재료 모델들의 장단점을 서로 비교하고 평가하였다.
본 연구의 목적은 개폐식 대공간 구조물의 풍하중 산정 및 구조해석의 과정을 자동으로 수행하는 컴포넌트를 개발하는 것이다. 설계한 파라메트릭 모델링을 StrAuto를 통해 구조해석 자동화단계를 거쳐 구조해석용 모델로 변환하는 과정을 실시간 으로 연동하여 구조해석 결과를 자동으로 도출하는 과정으로부터 본 연구에서는 추가로 구조물의 풍하중을 형상에 따라 상세히 할당하는 기능을 개발하였다. 이와 같은 과정을 통해 풍하중에 대한 최적화를 수행하여, 기존 설계된 구조의 물량을 줄이고, 구조적 안정성은 유지하는 방향으로 결론을 도출하였다. 추후에는 본 예제 모델을 통해 진동제어 최적화를 위한 제진 장치 설치위치의 자동탐색이 가능하게 되는 연구를 진행할 계획이다.
본 연구의 목적은 한국의 문화를 이해하고 보다 근본적인 정책수립에 도움이 될 수 있도록 문화정책과 동양철학 관점에서 복권문화를 해석하는 것이다. 연구방법은 문헌분석과 사례분석이다. 연구 자료는 국제적인 복권연합 사이트와 국가별 사행산업 운영기관의 사이트 정보를 활용한다. 사례분석은 복권의 종류별로 가장 많은 시장점유율을 차지하고 있는 일본의 점보복권, 한국의 로또복권, 영국의 스포츠 베팅, 미국의 즉석식 인쇄복권을 대상으로 한다. 사례분석결과, 추첨식 인쇄복권, 온라인 로또복권, 스포츠 베팅, 즉석식 인쇄복권 네 가지 게임 유형에 따라 동양철학적 특징, 문화유형, 정책도구, 규제 방법, 문제유형과 해결방법 등이 구분되었다. 일본, 한국, 영국, 미국 네 국가는 선호하는 복권의 유형에 차이가 있는데, 운명주의, 계층주의. 평등주의, 개인주의 네 가지 문화적 유형면에서 설명이 가능하였다. 각 문화유형은 제자백가의 대표적인 분류로서 유가, 법가, 묵가, 법가 네 가지 사상과 대응되어 설명되었다. 문화정책과 동양철학적 관점에서 볼 때 복권에 대한 정책수립과 소비자 대응정책은 인적조직과 규범, 인증제도와 법제도, 자원과 시장, 기술과 정보 측면에서 차이가 있었다. 사행산업 시장이 정보기술로 인해 강제적으로 국제화되고 개방되고 있는 상황에서 실질적 정책을 수립하기 위해서는 동양철학의 관점에서의 게임별로 문화와 환경을 이해해야 한다고 본다.
이 연구의 목적은 중국의 사이버 산업스파이 활동을 분석하고 이에 대한 대응방안을 제언하는 것이다. 이 연구를 위해서 국내외 중국의 산업 기밀유출과 관련된 연구보고서 및 학술논문 분석을 통한 문헌연구방법과 중국 사이버 산업스파이 활동 사례를 수집해서 분석하였다. 분석결과, 국내의 첨단 산업기술 및 각종 산업분야의 전문인력 등 인적 자원이 중국으로 유출되고 있으며, 과거 오프라인 상에서 이루어지던 산업스파이 활동이 사이버 공간으로까지 전이 되고 있었다. 또한 일부 대기업을 제외한 대다수의 중소기업에서는 비용 등의 이유로 산업기밀 유출 방지를 위한 대응체계가 미흡하였다. 중국의 사이버 산업스파이 활동에 대한 대응방안으로 1) 사이버 산업스파이에 대한 추가적인 법률 검토 및 개선, 2) ‘망분리 사업’의 민간기업 적용 및 정부 주도의 정책적 사업 추진, 3) 사이버 산업기술유출에 대한 보안의식의 지속적인 제고를 제언하였다. 끝으로 이 연구의 한계 및 향후 연구를 위한 제언을 논의하였다.