검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 13,900

        301.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In response to the expanding landscape of the biotechnology industry and the increasing demand for comprehensive drug development as well as the conduct of preclinical and clinical trials, there is a growing need for employment of diverse animal models, including both small and large animals. The focus of this study was on refining ex vivo culture techniques for bioluminescence imaging following administration of intradermal injections in large animals. To examine the feasibility of our approach, varying concentrations of the rFluc protein were administered to rats and live imaging was employed to validate the corresponding levels of expression. Subsequently, following administration of rFluc to mini-pigs, ex vivo analyses were performed on sample tissues to assess the levels of protein expression across different concentrations. In particular, optimal culturing conditions that facilitated the sustained expression of the protein in samples post-euthanasia were identified. Moreover, by employing small animal imaging devices, we were able to capture clear images of the sample plates, which provided evidence of the successful application of our experimental techniques. The findings from this research represent a significant effort toward refining bioluminescence imaging methods tailored for use with large animal models—an imperative facet of contemporary drug development and biomedical research.
        4,000원
        302.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Airborne bacteria in mushroom growing environments are a potential risk of contamination in commercial mushroom production. Controlling contamination in mushroom farms requires understanding the bacterial ecology in the cultivation environment. This study was conducted to investigate the concentration and species diversity of floating bacteria in a thermophilic mushroom cultivation room. Temperature, humidity, temperature, humidity, and bacterial concentration measurements were performed in April and May 2022 for a Pleurotus ostreatus cultivation house, in July and August 2023 for a Pleurotus sajor-caju and a Agaricus blazei cultivation house, and in June, July and August 2023 for a Pleurotus pulmonarius, Pleurotus sajor-caju and Calocybe indica cultivation house. The airborne bacterial concentration was 5.27 × 103~105 CFU/m3, 3.81 × 102 ~1.37 × 103 CFU/m3, and 2.55 × 102 ~1.37 × 102 CFU/m3 in the three cultivation houses, respectively. A total of 23 genera and 37 species of airborne bacteria were isolated from the three mushroom cultivation houses. 12 genera and 18 species were identified from P. ostreatus cultivation house. Furthermore, 4 genera and 4 species were found from A. blazei and C. indica cultivation house. In addition, 11 genera and 18 species were isolated from P. pulmonarius, P. sajor-caju and C. indica cultivation house. Among the bacteria isolated, the Bacilli class was the most common, followed by Gammaproteobacteria. Among the 37 bacterial species, it was determined that Bacillus cereus, B. licheniformis, Cedecea neteri, Exiguobacterium acetylicum and Raoultella terrigena could negatively affect humans or foodstuff. Cedecea neteri is also known to cause diseases among mushrooms.
        4,200원
        303.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Various treatments are being tried for lumbar neuropathy. Among them, neural mobilization aims to reduce peripheral nerve sensitivity by stimulating them directly. Similarly, applying kinesiotape stimulates skin and joint receptors around the nerves, thereby affecting nerve function and movement. Objectives: To investigated the effect of low back pain on the neural mobilization and kinesiotaping. Design: Randomized controlled trial. Methods: Thirty patients with chronic low back pain were randomly allocated to three groups: the neural mobilization exercise with kinesiotaping group (NEKTG, n=10), the neural mobilization exercise group (NEG, n=10), and the kinesiotaping group (KTG, n=10). Each group performed six intervention sessions over two weeks. The results were analyzed by measuring the numeric pain rating scale (NPRS) and straight leg raise (SLR) before and after the intervention in each group. Results: NEKTG, NEG, and KTG all indicated a significant decrease in the back pain index before and after the intervention. However, there were no differences observed between the three groups. The SLR angles before the experiment were identical across the three groups. The SLR angles before and after the intervention were as follows: the SLR angle significantly increased in NEKTG. Furthermore, there was a significant increase in the SLR angle in NEKTG compared to both NEG and KTG. Conclusion: Neural mobilization combined with kinesiotaping provided better therapeutic effects regarding pain reduction and neurodynamic improvement compared to alone kinesiotaping and mobilization with chronic low back pain.
        4,000원
        304.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Mobilization with movement (MWM) is an effective intervention for increasing range of motion (ROM) and function without pain. Objectives: The purpose of this study is to comprehensively characterize the functional effects of MWM applied to the ankle joint in patients with stroke. Design: Systematic Review and Meta-analysis. Methods: International electronic databases, CINAHL, Embase, MEDLINE, PubMed, and Google scholar were included and identified after review by two investigators in July 2023 according to PRISMA guidelines. Data were synthesized using software provided by Cochran and analyzed using a random effects model with reweighting to account for heterogeneity between participants. Results: After excluding duplicate studies, 14 of the 19 articles screened through the abstracts were excluded, resulting in a total of five studies involving 109 participants with stroke. MWM showed significant differences in ankle ROM [overall effect (Z=3.27, P=0.00)], gait speed [overall effect (Z=3.33, P=0.00)], and cadence [overall effect (Z=2.49, P=0.01)]. Conclusion: The results of the meta-analysis confirmed that MWM is effective in improving ankle ROM and gait parameters in patients with stroke.
        4,000원
        305.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: The forward head posture acts as a factor that can cause various neurovascular and musculoskeletal dysfunctions. But searching for a study on quality of life for patient with forward head posture was challenging. Therefore, this study aims to find the factors that most affect the quality of life in patients with forward head posture. Objectives: The purpose of this study was to investigate the correlations between the cranio-vertebral angle (CVA), neck disability index (NDI), pain, and sternocleidomastoid (SCM) thickness of patients with forward head posture and the quality of life of the patients and to figure out important factors that affect the quality of life of the patients with forward head posture. Design: Cress-sectional study. Methods: To measure the CVA, the angle at which the visible protrusion of C7 and the ear bead were connected was measured, and the neck disorder index was evaluated using the Korean version of NDI. The degree of pain of the subject was measured using a visual-analog scale (VAS). The SCM thickness was measured using an ultrasound imaging device, and the quality of life was evaluated using the Korean version of the World Health Organization quality of life questionnaire (WHOQL-BREF). Results: A significant predictive model showing 88% explanatory power for the dependent variable was confirmed, with an appropriate regression equation being found. The factor that most affected patients' quality of life in the forward head posture was confirmed by the SCM thickness. Conclusion: When applying an intervention to improve a patient's quality of life for patient with forward head posture, an intervention method that improves the SCM thickness should be recommended.
        4,000원
        306.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Self-myofascial release using a foam roller has short-term effects for improving muscle function and joint range of motion (ROM) and reducing delayed onset muscle soreness (DOMS) after exercise. Objectives: The purpose of our study was to examine the muscle physiological changes for each set in self-myofascial release of the hamstring muscles using a foam roller in order to provide basic data for the most effective program composition for improving muscle tension, stiffness, and flexibility of the hamstring muscles. Design: A quasi-experimental clinical trial. Methods: To confirm the effect of self-myofascial release of the hamstring muscles using a foam roller, muscle tone and stiffness of the hamstring muscles were measured. As an intervention method, the study subject performed four sessions of self-myofascial release by moving a foam roller back and forth on the posterior thigh muscle of the right leg. Results: There were statistically significant changes in the stiffness of the biceps femoris and the flexibility of the hamstring muscles. Conclusion: Self-myofascial release with foam rolling is an effective intervention method for increasing hamstring flexibility and ROM, and it is recommended as effective to perform self-myofascial release for three to four sessions to maintain normal muscle tone and stiffness of the hamstring muscles.
        4,000원
        307.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: The reduction in physical activity in stroke patients weakens their health and lowers their quality of life. There is a need for the development of effective exercise programs to enhance the physical activity of chronic stroke patients. Objectives: The purpose of this study is to investigate the effects of a rehabilitation sports program using Proprioceptive Neuromuscular Facilitation (PNF) on the body composition, physical function, and quality of life of stroke. Design: Single group study. Methods: This study was conducted on 9 chronic stroke patients. The exercise program, which applied PNF, was carried out in group sessions twice a week for 50 minutes each over 8 weeks. Participants were assessed before and after the exercise program using InBody, Fugl-Meyer Assessment for Upper Extremity (FMA-UE), Grip Strength, 10-Meter Walk Test (10MWT), Timed Up and Go Test (TUG), Functional Reach Test (FRT), and completed the 36-Item Short Form Health Survey (SF-36) questionnaire. Statistical analysis was performed using paired t-tests for pre- and post-exercise comparisons and the Wilcoxon signed-rank test for evaluating the effects of the exercise program. Results: The results of this study showed differences in weight (P>.05), BMI(P>.05), body fat (P>.05), FMA-UE (P<.05), Grip Strength (P<.05), 10MWT (P<.05), TUG (P<.05), FRT (P<.05), SF-36 (P<.05). Conclusion: This suggests that the rehabilitation sports program using PNF can be used as an exercise program to enhance physical activity, improving physical function and quality of life in chronic stroke patients.
        4,300원
        308.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Among the various rehabilitation methods for stroke patients, one method involves the use of vibration. Recently, vibration foam rollers, combining vibration with foam rolling, have been developed and are widely used. Objectives: The purpose of this study was to investigate the effects of vibration foam rolling on ankle range of motion (ROM), and gait speed in patients with stroke. Design: A randomized controlled trial. Methods: Thirty stroke patients volunteered to participate and were randomly assigned to the vibrating foam roller group (n=15) and the non-vibrating foam roller group (n=15). Active dorsiflexion ROM, and 10-meter walk (10MW) were used to evaluate ankle ROM, and gait speed before and after each exercise. The two groups performed a 30-minute foam roller exercise program. The non-vibrating foam roller group performed the same exercise program as the vibrating foam roller group, but without vibration. Results: The within-group change in active dorsiflexion ROM after the exercise was significant for both the vibrating foam roller group and the non-vibrating foam roller group (P<.05). The within-group change in 10MW after the exercise was significant for the vibrating foam roller group (P<.05), while it was not significant for the non-vibrating foam roller group (P>.05). Additionally, there was no significant difference in active dorsiflexion ROM and 10MW between the vibrating foam roller group and the non-vibrating foam roller group (P>.05). Conclusion: This study confirmed that a vibrating foam roller exercise program immediately improves ankle ROM and gait speed in stroke patients.
        4,000원
        309.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Interventions for acute low back pain include exercise therapy such as stretching, aerobic exercise, and sling exercise. Another treatment method for back pain is soft tissue release. Soft tissue release is a relaxation method that improves balance while allowing tension tissues to relax as much as possible. Objectives: To investigated the effect of acute low back pain on the massage ball exercise. Design: Randomized controlled trial. Methods: The twenty-eight subjects were randomly allocated to the Massage ball exercise with TENS group (MBETG, n=14) and the transcutaneous electrical nerve stimulation group (TG, n=14). For MBETG, massage ball exercise (BALLance Dr. Tanja Kühne method) was applied for 25 minutes followed by TENS for 15 minutes. The TG group applied TENS for 40 minutes. Each group conducted the intervention three sessions. The results were analyzed by measuring the numeric pain rating scale (NPRS), surface electromyography (%MVIC), and Oswestry disability index (ODI) before and after the intervention in each group. Results: Significant reduction was observed for NPRS and ODI in the MBETG (P<.05). And Significant higher was observed for %MVIC of the Erector spinae in the MBETG (P<.05). The NPRS and ODI in the MBETG were decreaed than the TG (P<.05). Conclusion: Massage ball exercise to patients with acute back pain will be effective in reducing pain, increasing muscle activity, and improving functional disability.
        4,000원
        310.
        2024.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, we investigated the microstructure and piezoelectric properties of 0.96(K0.456Na0.536)Nb0.95Sb0.05-0.04 Bi0.5(Na0.82K0.18)0.5ZrO3 (KNNS-BNKZ) ceramics based on one-step and two-step sintering processes. One-step sintering led to significant abnormal grain (AG) growth at temperatures above 1,085 °C. With increasing sintering temperature, piezoelectric and dielectric properties were enhanced, resulting in a high d33 = 506 pC/N for one-step specimen sintered at 1,100 °C (one-step 1,100 °C specimen). However, for one-step 1,115 °C specimen, a slight decrease in d33 was observed, emphasizing the importance of a high tetragonal (T) phase fraction for superior piezoelectric properties. Achieving a relative density above 84 % for samples sintered by the one-step sintering process was challenging. Conversely, two-step sintering significantly improved the relative density of KNNS-BNKZ ceramics up to 96 %, attributed to the control of AG nucleation in the first step and grain growth rate control in the second step. The quantity of AG nucleation was affected by the duration of the first step, determining the final microstructure. Despite having a lower T phase fraction than that of the one-step 1,100 °C specimen, the two-step specimen exhibited higher piezoelectric coefficients (d33 = 574 pC/N and kp = 0.5) than those of the one-step 1,100 °C specimen due to its higher relative density. Performance evaluation of magnetoelectric composite devices composed of one-step and twostep specimens showed that despite having a higher g33, the magnetoelectric composite with the one-step 1,100 °C specimen exhibited the lowest magnetoelectric voltage coefficient, due to its lowest kp. This study highlights the essential role of phase fraction and relative density in enhancing the performance of piezoelectric materials and devices, showcasing the effectiveness of the two-step sintering process for controlling the microstructure of ceramic materials containing volatile elements.
        4,000원
        311.
        2024.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Silicon carbide (SiC) has emerged as a promising material for next-generation power semiconductor materials, due to its high thermal conductivity and high critical electric field (~3 MV/cm) with a wide bandgap of 3.3 eV. This permits SiC devices to operate at lower on-resistance and higher breakdown voltage. However, to improve device performance, advanced research is still needed to reduce point defects in the SiC epitaxial layer. This work investigated the electrical characteristics and defect properties using DLTS analysis. Four deep level defects generated by the implantation process and during epitaxial layer growth were detected. Trap parameters such as energy level, capture-cross section, trap density were obtained from an Arrhenius plot. To investigate the impact of defects on the device, a 2D TCAD simulation was conducted using the same device structure, and the extracted defect parameters were added to confirm electrical characteristics. The degradation of device performance such as an increase in on-resistance by adding trap parameters was confirmed.
        4,000원
        312.
        2024.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Scanning probe microscopy (SPM) has become an indispensable tool in efforts to develop the next generation of nanoelectronic devices, given its achievable nanometer spatial resolution and highly versatile ability to measure a variety of properties. Recently a new scanning probe microscope was developed to overcome the tip degradation problem of the classic SPM. The main advantage of this new method, called Reverse tip sample (RTS) SPM, is that a single tip can be replaced by a chip containing hundreds to thousands of tips. Generally for use in RTS SPM, pyramid-shaped diamond tips are made by molding on a silicon substrate. Combining RTS SPM with Scanning spreading resistance microscopy (SSRM) using the diamond tip offers the potential to perform 3D profiling of semiconductor materials. However, damage frequently occurs to the completed tips because of the complex manufacturing process. In this work, we design, fabricate, and evaluate an RTS tip chip prototype to simplify the complex manufacturing process, prevent tip damage, and shorten manufacturing time.
        4,000원
        313.
        2024.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Nanoparticles are commonly used to avoid the opaque white color of TiO2 based sunscreen. However, a dispersing agent is typically required because of the tendency of the nanoparticles (NPs) to agglomerate. Stearic acid is one kind of dispersing agent often used for sunscreen products. However, according to the MSDS data sheet on stearic acid, stearic acid is highly hazardous to aquatic life and causes irritation on human skin. To avoid this problem, in this study a safer organic dispersing agent extracted from Korean seaweed has been studied to disperse TiO2 nanoparticles, and further use as an active agent in sunscreen products. The presence of phytochemicals in seaweed extract, especially alginate, can disperse TiO2 nanoparticles and improve TiO2 dispersion properties. Results show that seaweed extract can improve the dispersion properties of TiO2 nanoparticles and sunscreen products. Reducing the agglomeration of TiO2 nanoparticles improves sunscreen properties, by making it less opaque white in color, and increasing UV protection value. It was also confirmed that adding seaweed extract into sunscreen products had no irritating effects on the human skin, making it more desirable for cosmetics application.
        4,000원
        314.
        2024.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The optimization of deacetylation process parameters for producing chitosan from isolated chitin shrimp shell waste was investigated using response surface methodology with central composite design (RSM-CCD). Three independent variables viz, NaOH concentration (X1), radiation power (X2), and reaction time (X3) were examined to determine their respective effects on the degree of deacetylation (DD). The DD of chitosan was also calculated using the baseline approach of the Fourier Transform Infrared (FTIR) spectra of the yields. RSM-CCD analysis showed that the optimal chitosan DD value of 96.45 % was obtained at an optimized condition of 63.41 % (w/v) NaOH concentration, 227.28 W radiation power, and 3.34 min deacetylation reaction. The DD was strongly controlled by NaOH concentration, irradiation power, and reaction duration. The coefficients of correlation were 0.257, 0.680, and 0.390, respectively. Because the procedure used microwave radiation absorption, radiation power had a substantial correlation of 0.600~0.800 compared to the two low variables, which were 0.200~0.400. This independently predicted robust quadratic model interaction has been validated for predicting the DD of chitin.
        4,000원
        315.
        2024.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Thin films of yttria-stabilized zirconia (YSZ) nanoparticles were prepared using a low-temperature deposition and crystallization process involving successive ionic layer adsorption and reaction (SILAR) or SILAR-Air spray Plus (SILAR-A+) methods, coupled with hydrothermal (175 °C) and furnace (500 °C) post-annealing. The annealed YSZ films resulted in crystalline products, and their phases of monoclinic, tetragonal, and cubic were categorized through X-ray diffraction analysis. The morphologies of the as-prepared films, fabricated by SILAR and SILAR-A+ processes, including hydrothermal dehydration and annealing, were characterized by the degree of surface cracking using scanning electron microscopy images. Additionally, the thicknesses of the YSZ thin films were compared by removing diffusion layers such as spectator anions and water accumulated during the air spray plus process. Crack-free YSZ thin films were successfully fabricated on glass substrates using the SILAR-A+ method, followed by hydrothermal and furnace annealing, making them suitable for application in solid oxide fuel cells.
        4,000원
        316.
        2024.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The lightweight and high strength characteristics of aluminum alloy materials make them have promising prospects in the field of construction engineering. This paper primarily focuses on aluminum alloy materials. Aluminum alloy was combined with concrete, wood and carbon fiber reinforced plastic (CFRP) cloth to create a composite column. The axial compression test was then conducted to understand the mechanical properties of different composite structures. It was found that the pure aluminum tube exhibited poor performance in the axial compression test, with an ultimate load of only 302.56 kN. However, the performance of the various composite columns showed varying degrees of improvement. With the increase of the load, the displacement and strain of each specimen rapidly increased, and after reaching the ultimate load, both load and strain gradually decreased. In comparison, the aluminum alloy-concrete composite column performed better than the aluminum alloy-wood composite column, while the aluminum alloy-wood-CFRP cloth composite column demonstrated superior performance. These results highlight excellent performance potential for aluminum alloy-wood-CFRP composite columns in practical applications.
        4,000원
        317.
        2024.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Slipchip offers advantages such as high-throughout, low cost, and simple operation, and therefore, it is one of the technologies with the greatest potential for high-throughput, single-cell, and single-molecule analyses. Slipchip devices have achieved remarkable advances over the past decades, with its simplified molecular diagnostics gaining particular attention, especially during the COVID-19 pandemic and in various infectious diseases scenarios. Medical testing based on nucleic acid amplification in the Slipchip has become a promising alternative simple and rapid diagnostic tool in field situations. Herein, we present a comprehensive review of Slipchip device advances in molecular diagnostics, highlighting its use in digital recombinase polymerase amplification (RPA), loop-mediated isothermal amplification (LAMP), and polymerase chain reaction (PCR). Slipchip technology allows users to conduct reliable droplet transfers with high-throughput potential for single-cell and molecule analyses. This review explores the device’s versatility in miniaturized and rapid molecular diagnostics. A complete Slipchip device can be operated without special equipment or skilled handling, and provides high-throughput results in minimum settings. This review focuses on recent developments and Slipchip device challenges that need to be addressed for further advancements in microfluidics technology.
        4,000원
        318.
        2024.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Fluorine-doped tin oxide (FTO) has been used as a representative transparent conductive oxide (TCO) in various optoelectronic applications, including light emitting diodes, solar cells, photo-detectors, and electrochromic devices. The FTO plays an important role in providing electron transfer between active layers and external circuits while maintaining high transmittance in the devices. Herein, we report the effects of substrate rotation speed on the electrical and optical properties of FTO films during ultrasonic spray pyrolysis deposition (USPD). The substrate rotation speeds were adjusted to 2, 6, 10, and 14 rpm. As the substrate rotation speed increased from 2 to 14 rpm, the FTO films exhibited different film morphologies, including crystallite size, surface roughness, crystal texture, and film thickness. This FTO film engineering can be attributed to the variable nucleation and growth behaviors of FTO crystallites according to substrate rotation speeds during USPD. Among the FTO films with different substrate rotation speeds, the FTO film fabricated at 6 rpm showed the best optimized TCO characteristics when considering both electrical (sheet resistance of 13.73 Ω/□) and optical (average transmittance of 86.76 % at 400~700 nm) properties with a figure of merit (0.018 Ω-1).
        4,000원
        319.
        2024.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        High-Manganese (Mn) austenitic steel, with over 24 wt% Mn content, offers outstanding mechanical properties in cryogenic settings, making it a potential replacement for existing cryogenic materials. This high manganese steel exhibits high strength, ductility, and wear resistance, making it promising for applications like LNG tanks, flanges, and valves. To operate in cryogenic environments, hot forging and heat treatment processes are vital, especially in flange production. The cooling rate during high-temperature cooling after hot forging plays a critical role in influencing the microstructure and mechanical properties of high manganese steel. The rate at which cooling occurs during this process influences the size of the grains and the distribution of manganese and consequently has an impact on mechanical properties. This study assessed the microstructure and mechanical properties based on different cooling rates during the hot forging of High-Mn steel flanges. Comparing air and water cooling after hot forging, followed by heat treatment, revealed notable differences in grain size. These differences directly impacted mechanical properties such as tensile strength, hardness, and Charpy impact property. Understanding these effects is crucial for optimizing the performance and reliability of High-Mn steel in cryogenic applications.
        4,200원
        320.
        2024.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        New piezoelectric and triboelectric materials for energy harvesting are being widely researched to reduce their processing cost and complexity and to improve their energy conversion efficiency. In this study, BaTiO3 films of various thickness were deposited on Ni foams by R.F. magnetron sputtering to study the piezoelectric and triboelectric properties of the porous spongy structure materials. Then piezoelectric nanogenerators (PENGs) were prepared with spongy structured BaTiO3 and PDMS composite. The output performance exhibited a positive dependence on the thickness of the BaTiO3 film, pushing load, and poling. The PENG output voltage and current were 4.4 V and 0.453 μA at an applied stress of 120 N when poled with a 300 kV/cm electric field. The electrical properties of the fabricated PENG were stable even after 5,000 cycles of durability testing. The triboelectric nanogenerators (TENGs) were fabricated using spongy structured BaTiO3 and various polymer films as dielectrics and operated in a vertical contact separation mode. The maximum peak to peak voltage and current of the composite film-based triboelectric nanogenerator were 63.2 V and 6 μA, respectively. This study offers new insights into the design and fabrication of high output nanogenerators using spongy structured materials.
        4,000원