Fuel consumption in fisheries is a primary concern due to environmental effects and costs to fishermen. Much research has been carried out to reduce the fuel consumption related to fishing operations. The fuel consumption of fishing gear during fishing operation is generally related to hydrodynamic resistance on the gear. This research demonstrates a new approach using numerical methods to reduce fuel consumption. By designing the fishing gear using drawing software, the whole and partial resistance force on the gear can be calculated as a result of simulations. The simulation results will suggest suitable materials or gear structure for reducing the hydrodynamic forces on the gear while maintaining the performance of the gear. This research will helpful to reduce the CO2 emissions from fishing operations and lead to reduce fishing costs due to fuel savings.
In order to describe the performance of a wedge type jellyfish excluder device, a series of fishing experiments was carried out in the coastal areas of Yokji Island, southern Korea in 2009, using a trawl net with a cover net. The body size and weight of each individual (fish or jellyfish) caught in the experimental fishing were measured. In the case of giant jellyfish the bell diameter and weight were measured. The catch species was composed of giant jellyfish (Nemopilema nomurai), silver croaker (Pennahia argentata), yellow croaker (Larimichthys polyactics), finespotted flounder (Pleuronichthys cornutus), largehead hairtail (Trichiuruslepturus), melon seed (Psenopsisanomala) and so on. The weight ratio and individual ratio of total fish escaped through the outlet of the excluder device were 0.322 and 0.320, respectively. The weight ratios of giant jellyfish excluded from the trawl net ranged from 0.740 to 0.921 (average 0.852/haul). It means that the wedge type jellyfish excluder device performed well and allowed the most of the giant jellyfish to exclude through the trawl net. The approximately 70% of fish entered in trawl net was caught. The wedge type excluder device needs some improvements to minimize the fish escape from the trawl nets in the future.
For an effective management of fisheries resources, it is very important that to make clean inhabitation environment and to preserve fisheries resources. The material which is mainly used as fishing gear in modern times, is polyethylene, polypropylene, polyamide, etc., chemical fiber. And lost fishing gears which are make of these, occur ghost fishing and ocean pollution. To solve these problem, we development biodegradable fishing trap using the polybutylene succinate (PBS). Developed traps are for red snow crab (Chionoecetes japonicus) and shrimp, major traps in the East Sea, and we carried out fishing research using two kind traps in the coastal sea of Ayajin-port (Goseong) to analysis fishing efficiency of PE trap and PBS trap. As a result for fishing experiment (year 2005-2006) of red snow crab trap, two kind traps were almost the same in catches and length composition. During a experiment, parts of meshes, used for over 1 year, were cut by biodegradation. As a result for fishing experiment (year 2007) of shrimp trap, northern shrimp (Pandalus eous), coonstripe shrimp (Pandalus hypsinotus) and morotoge shrimp (Pandalopsis japonica) were catched, and the almost is northern shrimp. Two kind traps were almost the same in catches and length composition. In accordance with these result, it is recommended that the developed traps are have to commercialized because the fishing powers of PE traps and PBS traps were same. But biodegradation speed is have to controled in consideration of ocean microorganism volume and traps life.
To estimate the mesh selectivity of monofilament and multifilament gill net for Marbled sole, Pleuronectes yokohamae, the field testes were carried out 12 times with five different mesh sizes (86.6, 101.0, 121.2, 137.7, 151.5mm) in the western sea of Korea, 2007-2009. The master curve of selectivity was estimated by the extended Kitahara's method. In the field testes, the total number of species and catch were 26 and 987, respectively. The catch number of marbled sole was 728 and occupied 73.8% in total catch. The optimum values of l/m for 1.0 of retention probability in monofilament and multifilament gill net were estimated 0.288 and 0.307, respectively and l/m was estimated to be 0.189, 0.203, 0.213, 0.222 and 0.230 in case of monofilament gill net and 0.171, 0.191, 0.205, 0.216 and 0.227 in case of multifilament gill net when the retention probability were 0.1, 0.2, 0.3, 0.4 and 0.5, respectively. The 0.5 selection range of multifilament gill net was wider about 1.5 times than that of monofilament gill net according as multifilament gill net was 0.216 and monofilament gill net was 0.148. So the multifilament gill net has a low selectivity than that of the monofilament gill net. To estimate the optimum mesh size on first maturity length 19.5cm of marbled sole, the retention probability value of 0.1 was adopted in consideration of using the gill net for marbled sole at present. The optimum mesh size were estimated to be 103.2mm and 114.0mm in monofilament gill net and multifilament gill net, respectively, on first maturity length 19.5cm of marbled sole.
The main purpose of this study is to estimate willingness to pay (WTP) by the general publics, assuming that they pay tax or charge for protecting marine living resources and environment through developing and supplying biodegradable fishing nets. This study employed a contingent valuation method (CVM) which is an econometric method. The survey was conducted by using both double-bounded dichotomous choice and open-ended survey. Tobit model was used for the analysis. The variables included concerns about marine environment and fishing net discarded, sex, age profile, number of family members, educational level and personal disposable income. Annual average WTP per family for the biodegradable fishing net development and supply was estimated at 5,294 won and national WTP amounted to some 84.2 billion won. This includes both of use and non-use value of biodegradable fishing nets.
In order to improve the breaking strength and elongation of Polybutylene succinate (PBS) monofilament, the monofilament was produced by blending PBS and Polybutlyne adipate-co-terephthalate (PBAT). The PBS/PBAT blend monofilament was prepared by the melt spinning system, and the weight ratios of the compositions of PBS/PBAT was 100/0, 95/5, 90/10 and 85/15, respectively. The breaking strength, elongation, softness and crystallization of PBS/PBAT blend monofilament were analyzed by using a tensionmeter, softness measurement, X-ray diffractometer in the both dry and wet conditions. The PBS/PBAT blend monofilaments were spun in the take-up velocity of 1.19m/sec under the drawing ratio of 6.8:1 condition. The production volumes of PBS/PBAT blend monofilaments showed 20% less than that of Nylon. The breaking strength of PBS/PBAT blend monofilaments were decreased as PBAT contents increased, while elongation and softness were increased. In case of PBAT content were over 5%, the breaking strength, elongation and softness of PBS/PBAT blend monofilaments were not shown to increase in spite of increasing in PBAT contents. Based on these results, it was possible to make the monofilaments with the maximized physical properties when the PBAT contents at 5%.
Acoustic side-aspect target strength (TS) of living Japanese anchovy (Engraulis japonicus) was measured at 120kHz during in situ experiments. The data were collected by lowering and horizontally projecting the splitbeam transducer into the anchovy school. For analysis and interpretation of the side-aspect TS data, acoustic theoretical model, based on the fish morphology, and dorsal-aspect TS data were used. Total length of the anchovy ranged from 6.6 to 12.8cm (mean length 9.3cm). The side-aspect TS distributed between -40 and -55dB, has an obvious length dependency. The mean side-aspect TS of the anchovy was -47.8dB, and the TS was about 2dB higher than mean TS generated from dorsal-aspect measurements. With reference to maximum TS, the results of the side-aspect TS were distributed within the range of the theoretical and dorsal-aspect TS. Apparently these tendency indicates that side-aspect TS measured from the study is useful data. These in situ measurements of side-aspect TS can be applied to improve acoustic detection and estimates of the anchovy, and is necessary to measure with a various frequency and length for making enhance data.
Species of fish such as striped beakperch, bluefin searobin and konoshiro gizzard shad are commercially very important due to their high demand in the Korean market. When estimating acoustically the abundance of stocks for these species, it is of crucial importance to know the target strength (TS) to the length dependence. In relation to these needs, the TS experiments were conducted on three different species in an acrylic salt water tank using two split-beam echo sounders of 70 and 120 kHz. The TS for these three species under the controlled condition was simultaneously measured with the swimming movement by a DVR system and analyzed as a function of fish length (L) and frequency (or wavelength λ). The equation of the form TS=a log (L)+b log (λ)+c was derived for their TS-length dependence. The best fit regression of TS on fork length for striped beakperch was estimated as TS=35.67 log (L, m) -15.67 log (λ, m) -46.69 (r2=0.78). Furthermore, the best fit regression of TS on fork length for konoshiro gizzard shad was shown to be TS=25.85 log (L, m) -5.85 log (λ, m) -32.22 (r2=0.51). The averaged TS for 12 bluefin searobins with a mean length of 24.36cm at 70 kHz was analyzed to be -41.55dB. In addition, the averaged tilt angle obtained simultaneously by a DVR system with TS measurements for 27 konoshiro gizzard shads swimming within an acrylic salt water tank was estimated at -2.7˚.
The moving ranges and behavior of four wild abalones, Haliotis discus hannai, were measured by an acoustic telemetry technique. The shape of the sea bottom of the experimental area was surveyed by a bathymetry system and three self-recording type acoustic receivers were used for monitoring the behavior and measuring the movement range. The abalones (WA1-WA4) attached acoustic tags were released and measured the movement during ten months. Three abalones (WA1, WA3 and WA4) were successively detected around the released point during the experiment and were moved to the V2 area where water depth is deeper than the V1 area. The change of inhabitation depth was also detected from the depth sensor of WA4. As the result, abalones were moved to deeper water area accordance with the decrease of the water temperature. The moved ranges of abalones were approximately 200 - 400m from the release point.
This paper showed the difference between the selectivity of gill net by least square method with polynomials in Kitahara's and that by maximum likelihood analysis for Japanese sandfish and Korean flounder. Catch experiments for Japanese sandfish using commercial vessels off the eastern coast of Korea were conducted with six different mesh sizes between October and December 2007 and those for Korean flounder with five different mesh sizes between 2008 and 2009. The mesh size of 50% probability of catch corresponding to biological maturity length of fish was not different between that by least square method and that by maximum likelihood analysis for Japanese sandfish, however, a little different for Korean flounder, that is, those mesh sizes of 50% probability of catch for biological maturity length of Korean flounder were 10.6cm and 10.1cm by least square method and maximum likelihood analysis, respectively.
The paper presents investigations on to which degree the sinking speed of longlines is influenced by type of bait, bait sinking orientations and anchor weights. The main aim of this study is to obtain further insight in the ocean current displacement phenomena in demersal longlining. The sinking speed is one of the main factors deciding the current displacement. In an ongoing project, sinking speed experiments with longlines with 6 kg and 10 kg anchor weights have been carried out in the Trondheim fjord. The longlines used in the first experiments were rigged without bait and hook. The results of these experiments with two different anchor weights have revealed only a slight difference in the sinking speed, except for the part near to the anchors, even though the sinking speed of longlines in general is supposed to be much influenced by the anchor weights. The reason for the obtained result is supposed to be that the experiments have been carried out at relative shallow waters. Further studies have included bait sinking experiments in the flume tank. The experiments showed that the drag coefficient of "fillet type (flat)" bait varied from 0.763 to 1.735, while it for "elliptic type" bait varied from 0.62 to 1.483. Other activities have included calculation of the sinking speed of longlines as a function of the established resistance coefficients of bait of various shape and size for commercial longlining. The calculated sinking speed of a longline with the fillet type bait was found to be 12.4 to 16.5% lower than for a longline without bait.
Test fishing was carried out using six kinds of different mesh sizes (20, 22, 24, 28, 35, 40mm) for springnet-pot to study bycatches according to the mesh size and catches survey was done for another one (mesh size : 22mm, entrance round : 350mm) in Geo-je & Tong-young waters of Korea. On the first sea experiment, it was thought that suitable mesh size of spring-net-pot catching conger-eel over 35cm with decreasing the catches of conger-eel (Conger myriaster) below 35cm was 24mm. On the second sea experiment, commercial catches were crabs (Charybdis bimaculata), octopus minor (Octopus variabilis) and others including conger-eel, and catches proportion was 60% of total catches weights. There was no big difference for the monthly catches. Self-consumption catches were 9 species including conger-eel below 35cm holding 50% of catches in the side of weights. There were 40% of bycatches for the catches weights and 63% for catches numbers in the 22mm mesh size of spring-net-pot having entrance round over 140mm. It showed that 50% of catches weights were discarded.
Recently, Fishermen have required to expand the circumference of trap entrance for conger eel because it was difficult to take the catch out as well as to put the baits into. A series of fishing experiments was carried out in coastal areas of Tongyoung, Korea in 2008 and 2009 using the traps to describe the effect of the entrance size on the catch. The experimental traps (five types) were used in filed experiments with four types circumference size traps (140, 180, 220 and 260mm) with mesh size 22mm and another type was used the same one usually using in filed with mesh size 35mm (750mm circumference). The experiment results were, the conger eels of total length 35mm more or so were caught 85, 93, 142 and 176 individual by the experiment traps with mesh size 22mm as increase circumference size from 140mm to 260mm, respectively. And the small conger eels of the total length below 35mm to be prohibited to catch by law were caught 145, 160, 288 and 304 individual according to increase the circumference size of trap, respectively. In addition, in case of the trap with mesh size 22mm, bycatches were 230 - 260 individuals and much more than bycatches of the trap with mesh size 35mm. In conclusion, when we expand the circumference size of trap according to fishermen's requirement, we should review not only economic of fishery but also increasement the bycatch of non-target fishes and small size fishes.
In a split beam echo sounder, the transducer design needs to have minimal side lobes because the angular position and level of the side lobes establishes the usable signal level and phase angle limits for determining target strength. In order to suppress effectively the generation of unwanted side lobes in the directivity pattern of split beam transducer, the spacing and size of the transducer elements need to be controlled less than half of a wavelength. With this purpose, a 50 kHz tonpilz type transducer with a half-wavelength diameter in relation to the development of a split beam transducer was designed using the equivalent circuit model, and the underwater performance characteristics were measured and analyzed. From the in-air and in-water impedance responses, the measured value of the electro-acoustic conversion efficiency for the designed transducer was 51.6%. A maximum transmitting voltage response (TVR) value of 172.25dB re 1μPa/V at 1m was achieved at 52.92kHz with a specially designed matching network and the quality factor was 10.3 with the transmitting bandwidth of 5.14kHz. A maximum receiving sensitivity (SRT) of -183.57dB re 1V/μPa was measured at 51.45kHz and the receiving bandwidth at -3dB was 1.71kHz. These results suggest that the designed tonpilz type transducer can be effectively used in the development of a split beam transducer for a 50kHz fish sizing echo sounder.
This study was performed to estimate the swimming velocity of Pacific saury (Cololabis saira) migrated offshore Funka Bay of Hokkaido using an acoustic Doppler current profiler (OceanSurveyor, RDI, 153.6kHz) established in T/S Ushio-maru of Hokkaido University, in September 27, 2003. The ADCP's doppler shift revealed as the raw data that the maximum swimming velocity was measured 163.0cm/s, and its horizontal swimming speed and direction were 72.4±24.1 cm/s, 160.1˚±22.3˚ while the surrounding current speed and direction were 19.6±8.4 cm/s, 328.1˚±45.3˚. To calculate the actual swimming speed of Pacific saury in each bins, comparisons for each stratified bins must be made between the mean surrounding current velocity vectors, measured for each stratified bin, and its mean swimming velocity vectors, assumed by reference (threshold 〉 -70dB) and 5dB margin among four beams of ADCP. As a result, the actual averaged swimming velocity was 88.6cm/s and the averaged 3-D swimming velocity was 91.3cm/s using the 3-D velocity vector, respectively.
The indirect target strength (TS) estimation method which uses the Kirchhoff ray mode model (KRM model) was discussed to apply for a biomass estimation in the water of mixed species. TS of 25 live scorpion fishes for 120kHz were measured by a tethered method and of others dominant 5 species in the marine ranching ground of Jeju coastal water including a scorpion fish were also estimated by KRM model. The measurement TS of scorpion fish well agreed with the theoretical values and the standard formula of scorpion fish was estimated as TS120kHz=20Log (L)-72.9 (r2=0.67). TScm values estimated on trial to each sample of dominant 5 species were from -69.3dB to -75.1dB at 120kHz and they were in the general range of swimbladdered fish. It was clarified that TS by KRM model can be used to estimate fish biomass estimation by increasing a sample number and is more effective under the condition that there is rare TS information for inhabiting species in mixed-species area.
This study was conducted to collect the information on the behavioral characteristics and the habitat environment of mandarin fish (Siniperca schezeri) and catfish (Parasilurus asitus) with acoustic telemetry method in Chungju Lake, Korea. Mandarin fish tended to stay within 1km from the release points in downstream, and had a strong diurnal behavior. They approached to the lakefront at night. They also preferred to stay at deep water off the lakefront. The average swimming speed was faster at night (0.4BL/s) than during a day (0.2BL/s). They swam the shallow water area at night. Catfish frequently moved between upstream and downstream. Catfish tended to act during a day. The average swimming speed was faster during a day (0.3BL/s) than at night (0.2 BL/s). The average swimming depth was 14.3m, and they tended to float about 4m during a day.
This study monitored a variety of marine fish communities in artificial reefs unit of the total 5 types (Dice type, Octagonal turtle type, Two-stage tube type, Gazebo type, Tetrapod type) which are located in the marine ranching at Jeju island by scuba diving in May, July, October and December 2009. Underwater photographing was accomplished at total 3 phases (condition of artificial reefs photographing, concentric circle movement photographing and line transect photographing). The preservation condition of artificial reefs facility was very good, and the dominant species were Chromis notatus, Sebastes thompsoni, Oplegnathus fasciatus and Halichoeres poecilopterus. Fish abundance was high in May and June, and low in October and December, 2009. Chromis notatus was dominant at the all types of artificial reefs, Halichoeres poecilopterus for Gazebo type and Tetrapod type of artificial reefs, and Sebastes thompsoni for Dice type, Octagonal turtle type and Two-stage tube type of artificial reefs.
To investigate seasonal variation of fisheries resources composition and their correlationships with environmental factors in the coastal ecosystem of the middle Yellow Sea of Korea, shrimp beam trawl were carried out for the fisheries survey. Fisheries resources of 81 species, 57 families, and 6 taxa totally were collected by shrimp beam trawl in the middle coastal ecosystem of Yellow Sea of Korea. Species were included 6 species in Bivalvia, 6 in Cephalopoda, 22 in Crustacea, 2 in Echinodermata, 5 in Gastropoda, and 40 in Pisces. Diversity indices (Shannon index, H') showed seasonal variation with low value of 2.14 in winter, and high value of 2.67 in spring. Main dominant species were Oratosquilla oratoria, Octopus ocellatus, Acanthogobius lactipes, Cynoglossus joyneri, Rapana venosa venosa, Loligo beka, Chaeturichthys stigmatias, Raja kenojei, Microstomus achne and Paralichthys olivaceus, that were occupied over 58% of total individuals, and 55% of wet weight. Fisheries organism made four coordinative seasonal groups by the principal component analysis (PCA), showing stronger seasonal variation than spatial variation. PC from PCA showed statistically significant cross-correlationships with seawater temperature, NH4-N, TP and chlorophyll a (P 〈 0.05).
In order to design the optimal escape vent for the coon strip shrimp pot, the tank experiments were conducted with the model pot of five different slit height and slit width, respectively. The optimal height and width of escape vent were determined to 20mm and 40mm by tank experiments, respectively. These were determined by the 50% selection carapace length which was denoted to 25mm in selectivity curve. The escape experiments were conducted to determine a number of escape vent with the original shrimp pot to be set the designed escape vent from 2 vents to 10 vents increasing at intervals of 2 vents in tank. The optimal number of escape vents denoted 8 vents. Therefore, to apply the escape vent in commercial shrimp pot will be efficient to reduce small size shrimps to catch.