Ensuring operational safety and reliability in Unmanned Aerial Vehicles (UAVs) necessitates advanced onboard fault detection. This paper presents a novel, mobility-aware multi-sensor health monitoring framework, uniquely fusing visual (camera) and vibration (IMU) data for enhanced near real-time inference of rotor and structural faults. Our approach is tailored for resource-constrained flight controllers (e.g., Pixhawk) without auxiliary hardware, utilizing standard flight logs. Validated on a 40 kg-class UAV with induced rotor damage (10% blade loss) over 100+ minutes of flight, the system demonstrated strong performance: a Multi-Layer Perceptron (MLP) achieved an RMSE of 0.1414 and R² of 0.92 for rotor imbalance, while a Convolutional Neural Network (CNN) detected visual anomalies. Significantly, incorporating UAV mobility context reduced false positives by over 30%. This work demonstrates a practical pathway to deploying sophisticated, lightweight diagnostic models on standard UAV hardware, supporting real-time onboard fault inference and paving the way for more autonomous and resilient health-aware aerial systems.
This study investigated the flowering response of three Korean native Aster species, namely A. hayatae, A. spathulifolius, and A. koraiensis, to varying photoperiods. Three-month-old plants propagated from cuttings were grown under four different photoperiods: 9, 12, 14, and 16 h. Aster hayatae flowered under all conditions, with flowering rates of 92%, 85%, 65%, and 27% under 9-, 12-, 14-, and 16-h photoperiods, respectively. Flowering in A. hayatae was promoted by shorter photoperiods, classifying it as a facultative short-day plant. Aster spathulifolius flowered only under 9- and 12-h photoperiods, with no significant difference between these treatments, suggesting that the species is an obligate short-day plant. However, given the low A. spathulifolius flowering rates of 27% and 13% under 9- and 12-h photoperiods, respectively, further research is required. Aster koraiensis did not flower under any photoperiod, possibly due to vernalization requirements or juvenility. These findings offer valuable insights into the photoperiodic flowering responses of these three Korean native Aster species, enhancing our understanding of their ecological traits and potential horticultural applications.
The utilization of pig slurry (PS) as an organic fertilizer plays a pivotal role in nutrient recycling within agricultural systems. However, this practice concomitantly leads nitrogen (N) losses through ammonia (NH₃) volatilization and nitrous oxide (N₂O) emissions. The objective of this study was to investigate the effect of wood biochar on mitigating NH3 and N2O emissions and enhancing N retention from PS-applied soil, and plant biomass production during the vegetative growth of rapeseed (Brassica napus L.). The experiment consisted of three treatments: 1) water (non-PS), 2) PS, and 3) PS combined with wood biochar (PS+WB). The PS+WB treatment resulted in the maintenance of elevated soil water content during the experimental period. The PS+WB treatment significantly enhanced soil nitrogen retention compared to PS alone, maintaining higher total N and NH₄⁺-N levels while reducing NO₃⁻ -N accumulation. Wood biochar application also leds to substantial reductions in NH₃ and N₂O emissions, mitigating environmental N losses. The PS+WB treatment resulted in an improvement of shoot biomass, crude protein content, and total digestible nutrients, indicating enhanced forage quality. The increased soil moisture content in PS+WB further contributed to plant growth benefits. These findings demonstrate that wood biochar is an effective amendment for improving nitrogen retention, reducing gaseous N emissions, and enhancing crop productivity in PS-amended soils.
A 13-year-old female lion underwent a simple mastectomy for a rapidly growing abdominal mass, confirmed as mammary adenocarcinoma after histopathological examination. Mammary tumors are common in domestic cats but less frequently reported in African lions. This report presents the first documented case of mammary adenocarcinoma in an African lion in South Korea. The mass was successfully excised through stable anesthesia and surgery. This report adds to the limited literature on mammary tumors in large felids and discusses the need for tailored management strategies.
Production technology trials for PARC’s new fodder oat cultivar (PARC-Oat) were conducted at the National Agricultural Research Center (NARC) under rain-fed conditions in Islamabad from 2021 to 2023. The effects of different fertilizer doses, planting densities (seed rates), and inter-row spacing on green fodder yield were studied. The experiment comprised four fertilizer doses of nitrogen and phosphorus (N:P) (55:30, 65:40, 75:50, and 85:60 kg/ha), four seed rate densities (30 kg/ac, 35 kg/ac, 40 kg/ac, and 45 kg/ac), and four inter-row spacings (15 cm, 30 cm, 45 cm, and 60 cm). Results based o n k ey p arameters a ffecting t he y ield of PARC-O at—namely plant height (cm), leaf area (cm²), leaves per tiller, number of tillers per plant, and green fodder yield (t/ha)—indicated that the maximum yield of 72.74 t/ha was observed with the fertilizer dose of 75:50 kg/ha (N:P). Similarly, a seed rate of 40 kg/ha produced optimal planting densities, resulting in the highest green fodder yield of 72.85 t/ha, while an inter-row spacing of 30 cm yielded the maximum green fodder yield of 74.30 t/ha. These results suggest that to achieve maximum green fodder biomass of oats, best management practices should include the application of a fertilizer dose of 75:50 (N:P), a seed rate of 40 kg/ha, and an inter-row spacing of 30 cm.
온실 내부 환경은 지역에 따라 외부 환경의 영향을 지속적으로 받는다. 본 연구는 몽골, UAE(아부다비), 호 주(퀸슬란드) 등 지역별로 구축된 한국형 스마트 온실의 환경 특성을 비교하고자 수행하였다. 몽골과 아부다비의 온실 모두 내외부 엔탈피 차이가 감소함에 따라 환기율이 증가하였다. 아부다비의 반밀폐형 온실에서는 10시부터 14시까지 평균 내부 기온이 외부 기온보다 약 7-10°C 낮았고 내부 VPD(12mbar)는 외부 VPD(56mbar)보다 4.6 배 낮았는데 이 결과는 포그 시스템 운영과 관련이 있는 것으로 보인다. 퀸즐랜드 온실의 경우, 내부 온도가 외부 온 도보다 11시 기준 약 3.81°C 높았고, 내부 엔탈피와 VPD가 외부 온도보다 높았으며, 내부와 외부의 엔탈피 차이가 증가함에 따라 환기율이 증가하였다. 이 결과로 엔탈피를 낮추는 것은 환기와, VPD를 낮추는 것은 포그 시스템 작 동과 관련이 있는 것을 알 수 있다. 또한, 작물 생육에 적합한 환경 조건을 효과적으로 관리하기 위해 엔탈피와 VPD 기반의 포그, 환기 또는 난방 시스템이 필요하다는 것을 알 수 있다.
In this study, ultrasonic waves were combined with chemical cleaning to regenerate expensive membranes or solid filters. Nitric acid cleaning alone achieved a flux recovery rate of 68%, but when ultrasonic waves were applied simultaneously, the rate increased to 91%. Similarly, cleaning with HYDREX 4710, a membrane detergent, achieved a flux recovery rate of 76%, which improved to 95% when combined with ultrasonic waves. The operational lifespan of the membranes increased by 125 hours when ultrasonic waves were used in conjunction with cleaning agents compared to using an organic detergent alone. SEM and EDX analyses of unused membranes and membranes prior to chemical cleaning revealed significant adsorption of both organic and inorganic substances, such as aluminum (Al) and silicon (Si). These findings demonstrate that combining chemical cleaning with ultrasonic waves is a highly efficient method for membrane regeneration.
Ectopic ureter refers to a congenital anomaly in which one or both ureters do not connect to the urinary bladder at the correct anatomical site. This case report discusses the case of a 6-year-old female mixed-breed dog diagnosed with chronic urinary incontinence, systemic hypertension, pancreatitis, and sepsis resulting from an ectopic ureter. Treatment involved an initial nephro-ureterectomy to address severe pyonephrosis, followed by ureteroneocystostomy for the remaining functional kidney. Post-surgical outcomes showed notable improvements in clinical symptoms, laboratory findings, and blood pressure. This report emphasizes the need for early diagnosis and appropriate surgical treatment in cases of ectopic ureter. Additionally, it aims to present the clinical symptoms and conditions resulting from prolonged disease progression, as well as the corresponding treatment methods and prognosis.