검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3,407

        341.
        2022.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        담낭암은 드물지만 치명적인 악성 종양으로 초기에는 증상이 없어 대부분의 담낭암이 늦게 진단되고, 급속하게 인접 장기로 전이되기 때문에 예후가 불량하다. 따라서 담낭암을 조기에 발견하는 경우는 드물고, 담낭담석이나 용종으로 수술적 절제를 시행한 후 우연히 발견되는 때가 대부분이다. 저자들은 급성 무결석 담낭염 환자에서 초음파 내시경을 통해 비교적 조기에 담낭관암을 발견하여 성공적으로 치료할 수 있었던 증례를 경험하였다. 이에 문헌고찰과 함께 보고한다.
        4,000원
        344.
        2022.10 구독 인증기관·개인회원 무료
        With respect to the geologic repository, intrusion of groundwater has been considered as a major factor that can transfer radionuclides to the natural environment. Moreover, the migration of radionuclides in the natural groundwater system is significantly influenced by the interaction between the radionuclides and groundwater constituents. Among various hydrogeochemical reactions, hydrolysis is one of the major reactions that can affect the aqueous solubility of radionuclides. Therefore, a precise understanding of relevant chemical thermodynamic behavior is of cardinal importance for the reliable prediction of migration/retardation behavior of radionuclides in the natural groundwater system. The objective of the present work is to investigate the solubility behavior of Nd(OH)3(s) to provide relevant chemical thermodynamic data of Nd(III) as a chemical analogy of major radiotoxic elements such as Am(III) and Cm(III). All the experiments were performed with Ar gas-filled glovebox under inert atmospheric condition. The aqueous Nd(III) solution was prepared by dissolution of 0.5 g NdCl3·6H2O (Sigma-Aldrich) in 10 ml of deionized water. The Nd(III) solid phase was precipitated by dropwise addition of ca. 10 ml of 4 M NaOH (Sigma-Aldrich). The Nd(III) precipitate was identified to be crystalline Nd(OH)3(s) nanorod by using XRD and TEM. For the solubility experiment, the solid Nd(OH)3(s) was equilibrated at the pH range from 5.0 to 9.0 at 0.1 M NaCl condition. The total concentration of the Nd(III) was quantified by using UV/Vis absorption spectroscopy and ICP-MS after the phase separation. In the present work, the solubility behavior of the solid Nd(OH)3(s) phase was investigated by using colorimetric analysis. The chemical thermodynamic data obtained in this study are expected to enhance the reliability of solubility prediction for the trivalent lanthanides and actinides.
        345.
        2022.10 구독 인증기관·개인회원 무료
        According to the Nuclear Safety and Security Commission (NSSC) Notice No. 2021-26 “Delivery Regulations for the Low- and Intermediate Level Radioactive Waste (LILW)”, the activity of 3H, 14C, 55Fe, 58Co, 60Co, 59Ni, 63Ni, 90Sr, 94Nb, 99Tc, 129I, 137Cs, 144Ce, and gross alpha must be identified. Currently, the scaling factor of the dry active waste (DAW) for LILW is applied as an indirect evaluation method in Korea. The analyses are used the destructive methods and 55Fe, 60Co, 59Ni, 63Ni, 90Sr, 94Nb, 99Tc, and 137Cs, which are classified as nonvolatile nuclides, are separated through sequential separation and then measured by gamma detector, liquid scintillation counter (LSC), alpha/beta total counter (Gas Proportional Counter, GPC), and ICP-MS. We will introduce how to apply the existing nuclide separation method and improve the measurement method to supplement it.
        346.
        2022.10 구독 인증기관·개인회원 무료
        The Korea Atomic Energy Research Institute operates the Nuclear Cycle Experimental Research Facility which has radiation controlled area in the laboratory with the aim of realizing pyroprocessing technology. In this Facility, depleted Uranium feed material and a depleted Uranium mixed with some surrogate material are used for performing experiments. Therefore the facility is using uranium, users should be careful of radiation. This paper will explain the radiation protection of the Nuclear Cycle Experimental Research facility and will also explain how much alpha radiation comes out from the facility. The RMS (Radiation Monitoring System) detector is made by CANBERRA and the model name is ICAM. ICAM RMS is the detector which can detect Alpha Radiation by absorbing the air in the facility. The RMS detector is installed in the HVAC room on the third floor to check the air contamination through the chimney. The RMS is connected to the air ventilation line for detecting Alpha radiation in the whole facility. Experiment was performed for two weeks to check the radiation level and the air ventilation fan continued to operate 24 hours a day. the results are below the required value which is 0.1 Bq/m3, indicating that the facility is safe in terms of radiation safety management.
        347.
        2022.10 구독 인증기관·개인회원 무료
        As the decommissioning and decontamination (D&D) of nuclear power plants (NPPs) has actively proceeded worldwide, the management of radiation exposure of workers has become more critical. Radioactive aerosol is one of the main causes of worker exposure, contributing to internal exposure by inhalation. It occurs in the process of cutting radioactive metal structures or melting radioactive wastes during D&D, and its distribution varies according to decommissioning strategies and cutting methods. Among the dominant radionuclides in radioactive aerosols, Fe-55 is known to be the most abundant. Fe-55, which decays by electron capture, is classified as a difficult-to-measure (DTM) radionuclide because its emitted X-rays have too low energy to measure directly from outside of the container. Generally, for measuring DTM nuclides, the liquid scintillation counting (LSC) method and the scaling factor (SF) method are used. However, these methods are not suitable for continuous monitoring of the D&D workplace due to the necessity of sampling and additional analysis. The radiation measurement system that can directly measure the radionuclides collected at the aerosol filter could be more useful. In this study, as preliminary research on developing the radioactive aerosol monitoring system, we fabricated a gamma-ray spectrometer based on a NaI (Tl) scintillator and measured the energy spectrum of Fe-55. A beryllium window was applied to the scintillator for X-ray transmission, and the Fe-55 check source was directly attached to the scintillator assuming that the aerosol filter was equipped. 5.9 keV photopeak was clearly observed and the energy resolution was estimated as 44.10%. Also, the simultaneous measurement with Cs-137 was carried out and all the peaks were measured.
        348.
        2022.10 구독 인증기관·개인회원 무료
        Plastic scintillators can be used to find radioactive sources for portal monitoring due to their advantages such as faster decay time, non-hygroscopicity, relatively low manufacturing cost, robustness, and easy processing. However, plastic scintillators have too low density and effective atomic number, and they are not appropriate to be used to identify radionuclides directly. In this study, we devise the radiation sensor using a plastic scintillator with holes filled with bismuth nanoparticles to make up for the limitations of plastic materials. We use MCNP (Monte Carlo N-particle) simulating program to confirm the performance of bismuth nanoparticles in the plastic scintillators. The photoelectric peak is found in the bismuth-loaded plastic scintillator by subtracting the energy spectrum from that of the standard plastic scintillator. The height and diameter of the simulated plastic scintillator are 3 and 5 cm, respectively, and it has 19 holes whose depth and diameter are 2.5 and 0.2 cm, respectively. As a gamma-ray source, Cs-137 which emits 662 keV energy is used. The clear energy peak is observed in the subtracted spectrum, the full width at half maximum (FWHM) and the energy resolution are calculated to evaluate the performance of the proposed radiation sensor. The FWHM of the peak and the energy resolution are 61.18 keV and 9.242% at 662 keV, respectively.
        349.
        2022.10 구독 인증기관·개인회원 무료
        Gamma spectrometry is one of the main analysis methods used to obtain information about unknown radioactive materials. In gamma-ray energy spectrometry, even for the same gamma-ray spectrum, the analysis results may be slightly different depending on the skill of the analyst. Therefore, it is important to increase the proficiency of the analyst in order to derive accurate analysis results. This paper describes the development of the virtual spectrum simulator program for gamma spectrometry training. This simulator program consists of an instructor module and trainee module program based on an integrated server, in which the instructor transmits a virtual spectrum of arbitrarily specified measurement conditions to the students, allowing each student to submit analysis results. It can reproduce a virtual gamma-ray energy spectrum based on virtual reality and augmented reality technique and includes analysis function for the spectrum, allowing users to experience realistic measurement and analysis online. The virtual gamma-ray energy spectrum DB program manages a database including theoretical data obtained by Monte Carlo simulation and actual measured data, which are the basis for creating a virtual spectrum. The currently developed database contains data on HPGe laboratory measurement as well as in-situ measurements (ground surface, decommissioned facility wall, radiowaste drum) of portable HPGe detectors, LaBr3(Ce) detector and NaI detector. The analysis function can be applied not only to the virtual spectrum, but also to the input measured spectrum. The parameters of the peak analysis algorithm are customizable so that even low-resolution spectra can be properly analyzed. The validity of the database and analysis algorithm was verified by comparing with the results derived by the existing analysis programs. In the future, the application of various in-situ gamma spectrometers will be implemented to improve the profiling of the depth distribution of deposited nuclides through dose rate assessment, and the applicability of the completed simulator in actual in-situ gamma spectrometry will be verified.
        350.
        2022.10 구독 인증기관·개인회원 무료
        Radioactive source terms are important factor in design, licensing and operation of SMR (Small Modular Reactor). In this study, regulatory requirements and evaluation methodology for normal operation on NuScale SMR, which received standard design certification approval on September 11, 2020 from US NRC, are reviewed. The radioactive waste management system of nuclear power reactor should be designed to limit radionuclide concentration in effluents and keep radioactive effluents at restricted area boundary ALARA according to 10 CFR 20 and 10 CFR 50 Appendix I. Also, in general, the coolant source term to calculate the off-site radiological consequences for normal operation of SMR should be determined by using models and parameters that are consistent with regulatory guide 1.112, NUREG- 0017 and the guidance provided in ANSI/ANS-18.1-1999, and the result should be corrected by reflecting the design characteristics of SMR. The coolant source term of NuScale, unlike the case of large NPPs, cannot rely solely on empirical source term data, because the NuScale source term is based on first principle physics, operational experience from recent industry, and lessons learned from large PWR operation. Fission products in reactor coolant are conservatively calculated using first principle physics in SCALE Code assuming 60 GWD/MTU. The release of fission products from fuel to primary coolant based on industry operational experience is determined as fuel failure fraction of 0.0066% for normal operation source term and 0.066% for design basis source term while coolant source term of large NPP is calculated by using ANSI/ANS-18.1 for normal operation and fuel failure fraction of 1% for design basis source term. Water activation products in reactor coolant are calculated from first principles physics and corrosion activation products are calculated by utilizing current large PWR operating data (ANSI/ANS 18.1- 1999) and adjusted to NuScale plant parameters. Also, because ANSI/ANS 18.1-1999 is not based on first principle physics models for CRUD generation, buildup, transport, plate-out, or solubility, NuScale has incorporated lessons learned by using ERPI’s primary water chemistry and steam generator guidelines to ensure source term is conservative and design of materials used cobalt reduction philosophy to help ensure the coolant source term are conservative. Based on the coolant source term calculated according to the above-described method, the annual releases of radioactive materials in gaseous and liquid effluents from NuScale reactor are evaluated. Currently, Small Modular Reactors such as ARA, SMART 100 are under review for licensing in Korea. This study will be helpful to understand how the reactor coolant system source terms are defined and evaluated for SMR.
        351.
        2022.10 구독 인증기관·개인회원 무료
        The radioactive Sr-90, which is formed from beta decay, is well known as one of the most commonly detected nuclides in radioactive waste. In 2015, it was reported that Sr-90 was observed in some soil and metal wastes among the 516 drums of radioactive waste transferred from the decommissioning site of the Korea Research Reactor (in Seoul) to the disposal site (in Gyeongju). Decontamination and sequestration of radionuclides, including Sr, from nuclear waste is important because they are hazardous and harmful to the ecological environment. Immobilization of these nuclides using a zeolite framework is suitable and simple method that has been widely studied. Therefore, it is still necessary to continuously explore the thermal stability of various zeolites and environmental changes around adsorbed cations in zeolite pore for effective immobilization of these radionuclides. In this study, we observed the thermal stability in fully Sr-exchanged natrolite (Sr-NAT), one of small-pore zeolite, from room temperature to 350°C using the in-situ synchrotron X-ray powder diffraction and thermogravimetric (TGA) analysis. In addition, we investigated the structural changes in Sr-NAT during temperature increase by Rietveld analysis. Sr-NAT exhibited apparent zero thermal expansions (ZTE) with the thermal expansion coefficients of -3(1) × 10-6 at the initial stage of increasing the temperature due to dehydration process. In the section from 250°C to 300°C, a phenomenon like negative thermal expansion (NTE) occurs in which the unit cell volume of Sr-NAT decreases despite the increase in temperature. Sr-NAT maintained well its crystallinity up to 350°C, and it became amorphous at 350°C. In this study, we provide a fundamental understanding of the structural changes and thermal stability mechanism of Sr-exchaged zeolite natrolite with increasing temperature.
        352.
        2022.10 구독 인증기관·개인회원 무료
        An induction melting facility includes several work health and safety risks. To manage the work health and safety risks, care must be taken to identify reasonably foreseeable hazards that could give rise to risks to health and safety, to eliminate risks to health and safety so far as is reasonably practicable. If it is not reasonably practicable to eliminate risks to health and safety, attention have to be given to minimize those risks so far as is reasonably practicable by implementing risk control measures according to the hierarchy of control in regulation, to ensure the control measure is, and is maintained so that it remains, effective, and to review and as necessary revise control measures implemented to maintain, so far as is reasonably practicable, a work environment that is without risks to health or safety. The way to manage the risks associated with induction melting works is to identify hazards and find out what could cause harm from melting works, to assess risks if necessary – understand the nature of the harm that could be caused by the hazard, how serious the harm could be and the likelihood of it happening, to control risks – implement the most effective control measures that are reasonably practicable in the circumstances, and to review control measures to ensure they are working as planned.
        353.
        2022.10 구독 인증기관·개인회원 무료
        Molten Salt Reactor, which employs molten salt mixture as fuel, has many advantages in reactor size and operation compared to conventional nuclear reactor. In developing Molten Salt Reactor, Offgas system should be properly designed since the fission products in off-gas accelerates the corrosion in reactor structure materials and deteriorates the purity of liquid fuel. The design of off-gas system therefore requires the preliminary study of the behavior of evolved fission products in off-gas units and the development of off-gas model is crucial in developing such system. In this study, we corrected the off-gas illustrative model proposed by ORNL (Nuclear Engineering and Design, vol 385(15) 111529, 2021) by employing physically consistent concept of capture rate of fission product and holdup. For the application of the corrected off-gas model to Chloride-based 6 MW Molten Salt Reactor, major fission products were firstly determined from OpenMC based neutronics calculation and chain reaction related to the major fission products were defined. Based on these data, the holdup behavior of fission products in off-gas units (decay tank, caustic scrubber, Halide trap, H2O trap and charcoal bad) were investigated.
        354.
        2022.10 구독 인증기관·개인회원 무료
        The disposal criteria of the domestic LILW disposal facility specifies that fluidized substances such as the spent resin, the evaporator bottom should be solidified in a physically stable solid form, such as cementation and polymerization. And the solidified form applies requirements for compressive strength, immersion test, thermal circulation test, radiation irradiation test, leaching test, and free standing water measurement test. On the other hand, it is specified that immobilization iss applied to wastes with a total radioactivity concentration of more than 74,000 of radionuclides with a half-life exceeding 20 years among non-homogeneous wastes such as spent filters and DAW, but the test requirements are not applied. Nevertheless, it is necessary for waste generator to establish quality control standards for the manufacture of immobilized solid form through reviewing overseas cases and domestic regulations and technical standards. The test requirements for solidified solid form require measurement of structural stability (compressive strength, immersion, thermal cycling, irradiation test), leachability (leaching test), and free standing water measurement. A characteristic of the immobilized solid form is that it is not mixed with the waste and that the cement medium surrounds the waste. Therefore, the structural soundness is higher than that of the solidified solid mixed with waste. In addition, even when in contact with water, the cement medium blocks the contact between waste and water, thereby preventing the spread of radionuclides. Therefore, considering the characteristics of these immobilized solid form, compressive strength test and free standing water measurement are applied for structural soundness. For other tests, it is determined that application is unnecessary.
        355.
        2022.10 구독 인증기관·개인회원 무료
        The dismantlement of the Kori Unit 1 and Wolsong Unit 1 nuclear power plants is scheduled. Since about 40% of the cost of dismantling nuclear power plants is the cost of disposing of generated wastes, it is important to secure recycling technologies. Among them, low and intermediate level radioactive wastes are made of porous filters and adsorbent materials of ceramic foam to remove nuclides such as C-14, I, and Xe generated during nuclear dismantling. In order to remove a large amount of nuclides, physical properties such as a specific surface area and porosity of a ceramic foam filter are important, however when a heat treatment temperature is increased to increase the strength of the filter, the nuclides removal ability is reduced. In order to remove a large amount of nuclides, physical properties such as a specific surface area and porosity of a ceramic foam filter are important, however when a heat treatment temperature is increased to increase the strength of the filter, the nuclides removal ability is reduced. Therefore, in this study, the foam filter performance was improved by applying a sacrificial material to increase the specific surface area and porosity of the ceramic foam filter. The sacrificial material is burned out with polyurethane (PU) of the green filter before the heat treatment temperature to increase the strength of the ceramic foam filter so that it can be maintained as pores, thereby improving the specific surface area and porosity. The sacrificial materials and melting temperature (Tm) reviewed in this study were anthracite (530~660°C), PMMA (160°C), Cellulose acetate (260~270°C), and aluminum particle (660°C), and their effect on the manufacture of foam filters was studied by applying this. The specific surface part and porosity of the foam filter were improved when anthracite and aluminum particle were added, and PMMA and Cellulose acetate, which are relatively low temperature melting points, were burned out at a temperature lower than PU, and thus their physical properties were not greatly affected. The physical properties and specific surface part and porosity of ceramic foam filters manufactured using various sacrificial materials will be discussed.
        356.
        2022.10 구독 인증기관·개인회원 무료
        Encapsulation using cement as a solidification method for disposal of radioactive waste is most commonly used in most advanced countries in the nuclear technology to date due to its advantages such as low material cost and accumulated technology. However, in case of cement solidification, since moisture or hydroxyl group in cement is decomposed by radioactivity, it may happen that gas is generated, structural stability is weakened, and leachability is increased due to low chemical durability. Therefore, the various new solidification methods are being developed to replace it. As one of these alternative technologies, for dispersible metal compounds generated through the incineration replacement process, the study on engineering element technology for powder metallurgy is under way, which overcomes the interference problem between mechanical elements and media that may occur during the process such as the homogeneous mixing process of the target powder substance and additives used in the powder metallurgy concept-based sintering process for the solidification of the final glass composite material (GCM), the process of creating a compressed molded body using a specific mold, the process of final sintering treatment. The solidification process of dispersible radioactive waste can be largely divided into pre-treatment stage, molding stage, and sintering stage, and the characteristics of the final radioactive waste solidification material can vary depending on the solidification treatment characteristics of each stage. In relation with these characteristics, the matters to be considered when designing device for each stage to solidify dispersible radioactive waste (property of super-mixing device for homogenized powder formation, structural geometry and pressure condition of molding device for production of compressed molded body, temperature and operation characteristics of sintering device for final glass composite material (GCM), etc.) are drawn out. It is expected that the solidification device design reflecting these considerations will meet all disposal conditions of radioactive waste material, such as compressive strength and leaching characteristics of solidified radioactive waste material, and create a uniformized solidification of radioactive waste material.
        357.
        2022.10 구독 인증기관·개인회원 무료
        In this study, the process of compressing/packaging the spent filters of Kori Unit 1, which was conceptually presented in the previous study, is advanced so that disposal suitability for each step can be secure efficiently. In particular, the differences between the previous study and this study are that the disposable filters are screened using an In-Situ Object Counting System (ISOCS), and the method of collecting representative samples for development of scaling factor is specified. The process of compressing/packaging the spent filters consists of 7 stages as follows. 1) Collecting: The spent filters temporarily stored in the filter room are collected by dose and type remotely using a robot system to minimize the radiation exposure of workers according to a pre-established packaging plan. 2) Screening: The gamma activity concentration of the spent filters received by the robot system is measured by ISOCS. The spent filters below the low-level waste concentration limit and the surface dose are transferred into the compression system, while the others are returned in the filter room again. 3) Sampling: The external perforator drilling/cutting the filter was developed for sampling required for the new scaling factors. Since the sampling is collected remotely, the risk of exposure to workers can be reduced. The newly developed scaling factor will be used to verify the disposal suitability of the packages. 4) Compression: According to the pre-established plan, the spent filter collected by dose and type, is supplied to the compression system considering the dose and radionuclide inventory. Whether to additionally store the compressed filter in the drum is determined by checking the accumulated dose. 5) Immobilization: Immobilization with a safety material is necessary when inhomogeneous wastes, like spent filters, have the total radionuclide concentration with a half-life of more than 20 years is 74,000 Bq/g or more and for filling rate or non-dispersible treatment of particulates. 6) Packaging and Analysis: Waste information is labelled onto the package after the measurements of surface dose rate and surface contamination. Finally, using the drum assay system, the gamma radionuclide concentration is measured to identify at least 95% of the total radioactivity concentration of the package. 7) Temporary Storage and Delivery: The packages are moved to temporary storage in the plant prior to disposal. After establishing the plan for delivery and applying for a takeover request to KORAD, if the acceptance inspection is passed, the packages are transported to the disposal facility.