검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2,220

        29.
        2023.11 구독 인증기관·개인회원 무료
        Currently, non-volatile nuclides such as 94Nb, 99Tc, 90Sr, 55Fe, and 59/63Ni are used a sequential separation. In this study, we developed a separation for 99Tc and 90Sr by a carbonate precipitation. Sodium Carbonate (Na2CO3) was inserted in the aqueous sample from a Dry Active Waste (DAW) and a carbonate precipitation was produced. The precipitate is composed of di- or tri-valent element such as Co, Sr, Fe, Ni and the supernatant is composed of mono-valent element (Cs) and anion materials (ReO4 -, TcO4 -). In DAW, it was confirmed that the recovery of 90Sr (precipitate) and 99Tc (supernatant) were > 90%, respectively. The precipitate and supernatant separated by using a Sr-resin and an anion-exchange resin, respectively. The separated samples were measured by a Liquide Scintillation Counter (LSC, 90Sr) and Induced-Coupled Plasma-Mass Spectroscopy (ICPMS, 99Tc).
        30.
        2023.11 구독 인증기관·개인회원 무료
        Bis (2-ethylhexyl)phosphoric acid (HDEHP) is a renowned extractant, favored for its affinity to selectively remove uranium via its P=O groups. We previously synthesized HDEHP-functionalized mesoporous silica microspheres for solid-phase uranium adsorption. Herein, we investigated the kinetic and isothermal behavior of uranyl ion adsorption in mesoporous silica microspheres functionalized with phosphate groups. Adsorption experiments were conducted by equilibrating 20 mg of silica samples with 50 mL of uranium solutions, with concentrations ranging from 10 to 100 mgU L−1 for isotherms and 100 mgU L−1 for kinetics. Three distinct samples were prepared with varying HDEHP to TEOS molar ratios (x = 0.16 and 0.24) and underwent hydrothermal treatment at different temperatures, resulting in distinct textural properties. Contact times spanned from 1 to 120 hours. For x = 0.16 samples, it took around 50 and 11 hours to reach equilibrium for the hydrothermally treated samples at 343 K and 373 K, respectively. Adsorbed quantities were similar (99 and 101 mg g-1, respectively), indicating consistent functional group content. This suggests that the key factor influencing uranium adsorption kinetics is pore size of the silica. The sample treated at 373 K, with a larger pore size (22.7 nm) compared to 343 K (11.5 nm), experienced less steric hindrance, allowing uranium species to diffuse more easily through the mesopores. The data confirmed the excellent fit of pseudo-second-order kinetic model (R2 > 0.999) and closely matched the experimental value, suggesting that chemisorption governs the rate-controlling step. To gain further insights into uranium adsorption behavior, we conducted an adsorption isotherm analysis at various initial concentrations under a constant pH of 4. Both the Langmuir and Freundlich isotherm models were applied, with the Langmuir model providing a superior fit. The relatively high R2 value indicated its effectiveness in describing the adsorption process, suggesting homogenous sorbate adsorption on an energetically uniform adsorbent surface via a monolayer adsorption and constant adsorption site density, without any interaction between adsorbates on adjacent sites. Remarkably, differences in surface area did not significantly impact uranium removal efficiency. This observation strongly suggests that the adsorption capacity is primarily governed by the loading amount of HDEHP and the inner-sphere complexation with the phosphoryl group (O=P). Our silica composite exhibited an impressive adsorption capacity of 133 mg g-1, surpassing the results reported in the majority of other silica literature.
        31.
        2023.11 구독 인증기관·개인회원 무료
        Chelating agents, such as ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), and nitrilotriacetic acid (NTA) are widely used in industry and agriculture as water softeners, detergents, and metal chelating agents. In wastewater treatment plants, a significant amount of chelating agents can be discharged into natural waters because they are difficult to degrade. Since those compounds affect the mobility of radionuclides or heavy metals in decontamination operations at nuclear facilities and radioactive waste disposal, quantification of the amount of ligand is very important for safe nuclear waste management. To predict the behavior of the main complexation in sample matrices of radioactive wastes, it is essential to evaluate the distribution of the metal-chelating species and their stabilities in order to develop analytical techniques for quantifying chelating agents. We have investigated to collect information on the pH speciation of metal chelation and the stability constants of metal complexes depending on three chelating agents (EDTA, DTPA, and NTA). For example, Zhang’s group recently reported that the initial coordination pH of Cu(II) and EDTA4− is delayed with the addition of Fe(III), and the pH range for the stable existence of [Cu(EDTA)]2− is narrowed compared to when it is alone in the sample matrix. The addition of Fe(III) clearly impacts the chemical states of the Cu(II)-EDTA solution. Additionally, Eivazihollagh’s group demonstrated differences in the speciation and stability of Cu(II) species between Cu(II) and three chelating ligands (EDTA, DTPA, and NTA). This study will be greatly helpful in identifying the sample matrix for binding major chelating agents and metals as well as developing chemically sample pretreatment and separation methods based on the sample matrix. Finally, these advancements will enable reliable quantitative analysis of chelating agents in decommissioning radioactive wastes.
        32.
        2023.11 구독 인증기관·개인회원 무료
        Radiation from spent nuclear fuel (SNF) is one of key factors affecting the dissolution process of SNF and the source term from repository. The dissolution rate of uranium dioxide (UO2) matrix of SNF is expected to control the release of radionuclides from SNF in contact with water under geological disposal conditions. Based on the oxidative dissolution mechanism, the solubility of UO2 can increase significantly if the reducing environment near the fuel surface is altered by water radiolysis caused by radiation from SNF. Therefore, the analysis of water radiolysis products such as radicals (·OH, ·OH2, eaq, ·H) and molecules (H3O+, H2, H2O2) is perquisite for studies on the rate of such dissolution process to determine oxidation/dissolution mechanism and related rate constants. In this study we examined the two-known spectroscopic methods developed for H2O2 determination; one is the luminol-based chemiluminescence (luminol-CL) method and the other is the spectrophotometry using ferrous oxidation-xylenol orange complexation (FOX). Their applicability for quantitative analysis of H2O2 in potential aqueous samples from SNF dissolution studies was evaluated in terms of the analytical dynamic range (ADR), the limit of detection (LOD) and the interfering effects of various metal ions possibly present in real samples. The luminol-CL method exploits the chemiluminescence reaction caused by luminol; when in the presence of a metallic catalyst (e.g., Cu2+, Co2+), luminol emits a blue light (425 nm) at pH 10- 11 in response to oxidizing agents such as hydrogen peroxide. Although a flow-through reaction system is routinely employed to enhance the analytical sensitivity we achieved the ADR up to ~200 μM and LOD < 1 μM by a batch-wise CL detection using conventional cuvette cells and an intensified charge-coupled device (ICCD). Interestingly, it turned out that the interfering effects of other metal ions (e.g., UO2 2+, U4+, Fe2+ and Fe3+) is minimal, which should be advantageous for the luminol-CL method to be employed for samples potentially containing other metal ions. On the other hand, the FOX method spectrophotometrically analyzes H2O2 based on the difference in color (or absorption spectra) of Fe-xylenol orange (XO) complexes. Initially, the Fe2+-XO complex was provided in working solutions at pH 3, which was subsequently mixed with samples having H2O2 and allowed for quantitative oxidation of Fe2+ to Fe3+. Typically, by monitoring the absorbance of Fe3+-XO complex at 560-580 nm (λmax) the ADR up to ~100 μM and LOD ~1.6 μM were achieved. However, it is found that interfering effects from M3+ and M4+ ions are significant; these interfering metal ions can form XO complexes so as to directly contribute the measured absorbance. In contrast, the influence from M2+ ions was found to be negligible. To summarize we conclude that both methods can be applied for H2O2 determination for aqueous samples taken from SNF dissolution tests. However, prior to applying the FOX method the metal ion composition in those samples should be thoroughly identified not to overestimate the H2O2 concentration of samples. More details of underlying chemical reactions in both methods will be discussed in the presentation.
        33.
        2023.11 구독 인증기관·개인회원 무료
        In the event of a radiological emergency at a nuclear facility, the exchange of information on the accident situation is very important in the response process. For this reason, international organizations such as the IAEA and the EU operate systems to exchange information in the event of a radiological emergency. In south korea, the emergency response information exchange system (ERIX) developed by KINS is operated for use by the national radiological emergency response organization. The ERIX enables the exchange of emergency response information between organizations such as the government, nuclear operators, local authorities, KINS and KIRAMS. The KAERI has developed the KAERI emergency response information exchange system (KAERIX) for the exchange of accident information and emergency response information between the emergency response organizations of the KAERI in the event of a radiological emergency. This system is web-based using HTML, runs on internal network and is only available to KAERI staff. Recently, as the need for optimizing and upgrading KAERIX has arisen, improvements have been derived. The main improvement is optimizing KAERIX for Microsoft Edge to minimize errors. At present, it is optimized for Internet Explorer, but optimizing it for Microsoft Edge mode has become essential due to Microsoft discontinuing support for Internet Explorer. Another major improvement involves adding functions in ERIX to KAERIX, such as displaying the deletion/ correction status of input information and providing notifications for important information registration. Ultimately, KAERIX will be upgraded and optimized in 2024, reflecting improvements.
        34.
        2023.11 구독 인증기관·개인회원 무료
        The radiological characterization of SSCs (Structure, Systems and Components) plays one of the most important role for the decommissioning of KORI Unit-1 during the preparation periods. Generally, a regulatory body and laws relating to the decommissioning focus on the separation and appropriate disposal or storage of radiological waste including ILW (intermediate level waste), LLW (low level waste), VLLW (very low level waste) and CW (clearance waste), aligned with their contamination characteristics. The result of the preliminary radiological characterization of KORI Unit-1 indicated that, apart from neutron activated the RV (reactor vessel), RVI (reactor vessel internals), and BS (biological shielding concrete), the majorities of contamination were sorted to be less than LLW. Radiological contamination can be evaluated into two methods. Due to the difficulties of directly measuring contamination on the interior surfaces of the pipe, called CRUD, the assessment was implemented by modeling method, that is measuring contamination on the exterior surfaces of the pipes and calculating relative factors such as thickness and size. This indirect method may be affected by the surrounding radiation distribution, and only a few gamma nuclides can be measured. Therefore, it has limitation in terms of providing detailed nuclide information. Especially, α and β nuclides can only be estimated roughly by scaling factors, comparing their relative ratios with the existing gamma results. To overcome the limitation of indirect measurement, a destructive sampling method has been employed to assess the contamination of the systems and component. Samples are physically taken some parts of the systems or components and subsequently analyzed in the laboratory to evaluate detailed nuclides and total contamination. For the characterization of KORI Unit-1, we conducted the radiation measurement on the exterior surfaces of components using portable instruments (Eberline E-600 SPA3, Thermo G20-10, Thermo G10, Thermo FH40TG) at BR (boron recycle system) and SP (containment spray system) in primary system. Based on these results, the ProUCL program was employed to determine the destructive sample collection quantities based on statistical approach. The total of 5 and 8 destructive sample quantities were decided by program and successfully collected from the BR and SP systems, respectively. Samples were moved to laboratory and analyzed for the detail nuclide characteristics. The outcomes of this study are expected to serve as valuable information for estimating the types and quantities of radiological waste generated by decommissioning of KORI Unit-1.
        35.
        2023.11 구독 인증기관·개인회원 무료
        Domestic commercial low- and intermediate-level radioactive waste storage containers are manufactured using 1.2 mm thick cold-rolled steel sheets, and the outer surface is coated with a thin layer of primer of 10~36 μm. However, the outer surface of the primer of the container may be damaged due to physical friction, such as acceleration, resonance, and vibration during transportation. As a result, exposed steel surfaces undergo accelerated corrosion, reducing the overall durability of the container. The integrity of storage containers is directly related to the safety of workers. Therefore, the development of storage containers with enhanced durability is necessary. This paper provides an analysis of mechanical properties related to the durability of WC (tungsten carbide)-based coating materials for developing low- and intermediate-level radioactive waste storage containers. Three different WC-based coating specimens with varied composition ratios were prepared using HVOF (high-velocity oxy-fuel) technique. These different specimens (namely WC-85, WC-73, and WC-66) were uniformly deposited on cold-rolled steel surfaces ensuring a constant thickness of 250 μm. In this work, the mechanical properties of the three different WCbased coaitng materials evaluated from the viewpoints of microstructure, hardness, adheision force between substrate and coating material, and wear resistance. The cross-sectional SEM-EDS (Scanning Electron Microscope-Energy Dispersive X-ray Spectroscopy) images revealed that elements W (tungsten), C (carbon), Ni (nickel), and Cr (chromium) were uniformly distributed within the each coating layers which was approximately 250 μm thick. The average hardness values of HWC-85 and HWC-73 were found to be 1,091 Hv (Vickers Hardness) and 1,083 Hv, respectively, while the HWC-66 exhibited relatively lower hardness value of 883 Hv. This indicates that a higher WC content results in increased hardness. Adhesion force between and substrates and coating materials exceeded 60 MPa for all specimens, however, there were no significant differences observed based on the tungsten carbide content. Furthermore, a taber-type abrasion tester was used for conducting abrasion resistance tests under specific conditions including an H-18 load weight at 1,000 g with rotational speed set at 60 RPM. The abrasion resistance tests were performed under ambient temperatures (RT: 23±2°C) as well as relative humidity levels (RH: 50±10%). Currently, the ongoing abrasion resistance tests will include some results in this study.
        36.
        2023.11 구독 인증기관·개인회원 무료
        This study focuses on the development of coatings designed for storage containers used in the management of radioactive waste. The primary objective is to enhance the shielding performance of these containers against either gamma or neutron radiation. Shielding against these types of radiation is essential to ensure the safety of personnel and the environment. In this study, tungsten and boron cabide coating specimens were manufactured using the HVOF (High-Velocity Oxy Fuel) technuqe. These coatings act as an additional layer of protection for the storage containers, effectively absorbing and attenuating gamma and neutron radiation. The fabricated tungsten and boron carbide coating specimens were evaluated using two different testing methods. The first experiment evaluates the effectiveness of a radiation shielding coating on cold-rolled steel surfaces, achieved by applying a mixture of WC (Tungsten Carbide) powders. WC-based coating specimens, featuring different ratios, were prepared and preliminarily assessed for their radiation shielding capabilities. In the gamma-ray shielding test, Cs-137 was utilized as the radiation source. The coating thickness remained constant at 250 μm. Based on the test results, the attenuation ratio and shielding rate for each coated specimen were calculated. It was observed that the gammaray shielding rate exhibited relatively higher shielding performance as the WC content increased. This observation aligns with our findings from the gamma-ray shielding test and underscores the potential benefits of increasing the tungsten content in the coating. In the second experiment, a neutron shielding material was created by applying a 100 μm-thick layer of B4C (Boron Carbide) onto 316SS. The thermal neutron (AmBe) shielding test results demonstrated an approximate shielding rate of 27%. The thermal neutron shielding rate was confirmed to exceed 99.9% in the 1.5 cm thick SiC+B4C bulk plate. This indicates a significant reduction in required volume. This study establishes that these coatings enhance the gamma-ray and neutron shielding effectiveness of storage containers designed for managing radioactive waste. In the future, we plan to conduct a comparative evaluation of the radiation shielding properties to optimize the coating conditions and ensure optimal shielding effectiveness.
        37.
        2023.11 구독 인증기관·개인회원 무료
        We conducted safety assessments for the disposal of spent resin mixed waste after the removal of beta radionuclides (3H, 14C) in a landfill facility. The spent resin tank of Wolsong nuclear power plant is generated by 8:1:1 weight ratio of spent ion exchange resin, spent activated carbon and zeolite. Waste in the spent resin tank was classified as intermediate-level radioactive waste due to 14C. Other nuclides such as 60Co and 137Cs exhibit below the low-level radioactive waste criteria. The techniques for separating mixed waste and capturing 14C have been under development, with a particular focus on microwave-based methods to remove beta radionuclides (3H, 14C) from spent activated carbon and spent resin within the mixed waste. The spent resin and activated carbon within the waste mixture exhibits microwave reactivity, heated when exposed to microwaves. This technology serves as a means to remove beta isotopes within the spent resin, particularly by eliminating 14C, allowing it to meet the low-level radioactive waste criteria. Using this method, the waste mixture can meet disposal requirements through free water and 3H removal. These assessments considered the human intrusion scenarios and were carried out using the RESRAD-ONSITE code. The institutional management period after facility closure is set at 300 years, during which accidental exposures resulting from human intrusion into the disposal site are accounted for. The assessment of radiation exposure to intruders in a landfill facility included six human intrusion scenarios, such as the drilling scenario, road construction scenario, post-drilling scenario, and post-construction scenario. Among the six human intrusion scenarios considered, the most conservative assessment about annual radiation exposure was the post-drilling scenario. In this scenario, human intrusion occurs, followed by drilling and residence on the site after the institutional management period. We assumed that some of the vegetables and fruits grown in the area may originate from contaminated regions. Importantly, we confirmed that radiation doses resulting from post-institutional management period human intrusion scenarios remain below 0.1 mSv/y, thus complying with the annual dose limits for the public. This research underscores the importance of effectively managing and securing radioactive waste, with a specific focus on the safety of beta radionuclide-removed waste during long-term disposal, even in the face of potential human intrusion scenarios beyond the institutional management period.
        38.
        2023.11 구독 인증기관·개인회원 무료
        The occurrence of shear failure in a rock mass, resulting from the sliding of joint surfaces, is primarily influenced by the surface roughness and contact area of these joints. Furthermore, since joints serve as crucial conduits for the movement of water, oil, gas, and thermal energy, the aperture and geometric complexity of these joints have a significant impact on the hydraulic properties of the rock mass. This renders them critical factors in related industries. Therefore, to gain insights into the mechanical and hydraulic behavior of a rock mass, it is essential to identify the key morphological characteristics of the joints mentioned above. In this study, we quantified the morphological characteristics of tensile fractures in granitic rocks using X-ray CT imaging. To accomplish this, we prepared a cylindrical sample of Hwang-Deung granite and conducted splitting tests to artificially create tensile fractures that closely resemble rough joint surfaces. Subsequently, we obtained 2D sliced X-ray CT images of the fractured sample with a pixel resolution of approximately 0.06 mm. By analyzing the differences in CT numbers of the rock components (e.g., fractures, voids, and rock matrix), we isolated and reconstructed the geometric information of the tensile fracture in three dimensions. Finally, we derived morphological characteristics, including surface roughness, contact area, aperture, and fracture volume, from the reconstructed fracture.
        39.
        2023.11 구독 인증기관·개인회원 무료
        The post-closure safety assessment of a repository is typically conducted over an extensive timescale from ten thousand to a million years. Considering that biosphere ecosystems may undergo significant changes over such lengthy periods, it is essential to incorporate the long-term evolution of the biosphere into the safety assessment. Climate change and landscape development are identified as critical drivers with the potential to impact the hydrogeological and hydrogeochemical characteristics of the biosphere. These changes can subsequently alter the migration patterns of radionuclides through the biosphere and influence human exposure doses. Therefore, this study formulates scenarios within the context of long-term biosphere evolution. We examine biosphere assessment processes employed in other countries and conduct a comparative study on scenario conditions. For example, biosphere assessment in Finland has identified sea-level changes and land-use alterations as significant factors in the long-term evolution of the biosphere. These factors are linked to Features, Events, and Processes (FEPs) associated with climate change and human activities. Sea-level changes are related to FEPs regarding climate change, land uplift, and shoreline displacement, while land-use changes are based on human activity-related FEPs (e.g., crop type, livestock and forest management, well construction, and demographics). Based on the literature review, this study has configured long-term evolution scenarios for the safety assessment of a deep geological repository for spent fuels.
        40.
        2023.11 구독 인증기관·개인회원 무료
        Safety assessments for geological disposal systems extend over tens of thousands of years, taking into account the radiotoxicity decay period of spent nuclear fuel. During this extensive period, the biosphere experiences multiple glacial cycles, and fluctuations in seawater amounts, attributed to the formation and melting of glaciers, lead to global sea level changes known as eustacy. These sea level changes can directly influence the land-sea interface and groundwater flow dynamics, consequently affecting the pathways of radionuclide transport - an essential element of dose assessment. Therefore, this study aims to investigate how glacial cycles and sea level changes impact radionuclide transport within geological disposal systems, especially in the biosphere. To achieve this objective, we obtained climate evolution data including sea level changes for the Korean Peninsula over a 200,000-years, simulated by a General Circulation Model (GCM). These data were then employed to predict site and hydrology evolutions. The study site was conceptualized biosphere of Artificial Disposal System (ADioS), and we utilized the Soil and Water Assessment Tool (SWAT) to simulate hydrological evolution. These datasets, encompassing climate, site, and hydrology evolution, were collectively employed as inputs for the biosphere module of Adaptive Process-Based Total System Performance Assessment Framework (APro). Subsequently, the APro’s biosphere module calculated radionuclide transport in groundwater flow and its release into surface water bodies, considering the influences of glacial cycles and sea level changes. The results show that hydrologic changes due to sea level change are relatively minor, while the impact of sea level change on groundwater flow and discharge is significant. Additionally, we identified that among the water bodies within ADioS, including rivers, lakes, and oceans, the ocean exhibits the most substantial radionuclide outflow throughout the entire period. The spatiotemporal distributions of radionuclides computed within APro will be further processed into a grid format and used as input for the dose assessment module. Through this study, it was possible to determine the impact of long-term glacial cycles and sea level changes on radionuclide transport. Additionally, this module can serve as a valuable tool for providing the spatiotemporal variability of radionuclides required for enhanced dose assessments.
        1 2 3 4 5