검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,255

        421.
        2018.09 구독 인증기관·개인회원 무료
        Cold, salt and heat are most critical factors that restrict full genetic potential, growth and development of crops worldwide.. In this study, we applied an annealing control primer (ACP) based GeneFishing approach to identify differentially expressed genes (DEGs) in annual ryegrass (cv. Kowinearly) leaves under cold, salt and heat stresses. Two-week-old seedlings were exposed to cold (4°C), salt (NaCl 200 mM) and heat (42 °C) treatments for 6 h. A total 8 differentially expressed genes were isolated form ryegrass leaves. These genes were sequenced then identified and validated form National Center for Biotechnology Information (NCBI) database. We identified several promising genes encoding light harvesting chlorophyll a/b binding protein, alpha-glactosidase b, chromosome 3B, elongation factor 1-alpha, FLbaf106f03, complete genome, translation initiation factor SUI1, and glyceraldehyde-3-phosphate dehydrogenase. These genes were potentially involved in photosynthesis, plant development, protein synthesis and abiotic stress tolerance in plants. These genes might be useful for the enhancement of abiotic stress tolerance in fodder crops along with crop improvement under unfavorable environmental conditions.
        422.
        2018.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        강원도농업기술원에서는 2003년 무름병에 비교적 강하고 화색과 화형이 우수하고 장미 분홍색을 가진 Zantedeschia rehmanni × hybrid ‘Super Gem’과 연한 노랑색 품종 Z. × hybrid ‘Black Magic’을 각각 모본과 부본으로 하여 인공 교배 하였다. 2006년에 개화특성을 검정하여 화색과 화형이 좋은 ‘GZ0616’를 선발하였으며, 2007년에 포장 재배하여 자구 증식률, 초장과 초세 등 1차 특성검정 후 2차 선발하였다. 2013부터 2015년까지 특성검정과 재배시험을 통하여 균일성과 안정성이 인정되어 ‘강교C4-6호’로 최종 선발되었으며, 2017년 2월에 ‘립스마일(Lip Smile)’로 품종등록 되었다. 화포 외부의 주 색은 연노랑바탕 적자색(Y2C+RP79C)이며, 화포 높이는 8.5cm, 폭은 6.2cm로 대형화이다. 개화소요일수는 64.3일, 초장은 66.0cm, 괴경은 80.0g이다. 기호도 평가에서도 ‘Captain Rosette’와 유사하였으며, 절화용으로 이용 가능하다.
        4,000원
        423.
        2018.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Acute vascular rejection has been known as a main barrier occurring in a xenograted tissue of alpha 1,3-galactosyltransferase knock-out (GalT KO) pig into a non-human primate (NHP). Adenosine which is a final metabolite following sequential hydrolysis of nucleotide by ecto-nucleotidases such as CD39 and CD73, act as a regulator of coagulation, and inflammation. Thus xenotransplantation of CD39 and CD73 expressing pig under the GalT KO background could lead to enhanced survival of recipient NHP. We constructed a human CD39 and CD73 expression cassette designed for endothelial cell-specific expression using porcine Icam2 promoter (pIcam2-hCD39/hCD73). We performed isolation of endothelial cells (pAEC) from aorta of 4 week-old GalT KO and membrane cofactor protein expressing pig (GalT-MCP/-MCP). We were able to verify that isolated cells were endothelial-like cells using immunofluorescence staining analysis with von Willebrand factor antibody, which is well known as an endothelial maker, and tubal formation assay. To find optimal condition for efficient transfection into pAEC, we performed transfection with GFP expression vector using four programs of nucleofection, M-003, U-023, W-023 and Y-022. We were able find that the program W-023 was optimal for pAEC with regard to viability and transfection efficiency by flow cytometry and fluorescent microscopy analyses. Finally, we were able to obtain GalT-MCP/-MCP/CD39/CD73 pAEC expressing CD39 and CD73 at levels of 33.3% and 26.8%, respectively. We suggested that pACE isolated from GalT-MCP/-MCP pig might be provided as a basic resource to understand biochemical and molecular mechanisms of the rejections and as an alternative donor cells to generate GalT-MCP/-MCP/CD39/CD73 pig expressing CD39 and CD73 at endothelial cells.
        4,000원
        424.
        2018.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To formulate folate receptor (FR)-specific graphene-based electrochemical electrodes, a folic acid (FA) derivative attached with two pyrene molecules on the glutamate tail of FA was synthesized. The resulting pyrene-functionalized FA (FA-Py) presented the spontaneous noncovalent binding on chemically reduced graphene oxides (rGO) through an π-π interaction. Ultrathin morphology, high water-resistance, and preservation of intact FR-specific pteroates from the rGO/FA-Py assembly allow this assembly to be exploited as robust and FR-specific electrochemical electrode materials. The limits of detecting rGO/FA-Py modified electrodes were found to be as low as 3.07 nM in FR concentrations in cyclic voltammetry analysis.
        4,000원
        425.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The objectives of this study was to evaluate the degradability and digestibility of crude protein (CP), rumen undegradable protein (RUP), and individual amino acids (AA) on six by-product feedstuffs (BPF) (rice bran, RB; wheat bran, WB; corn gluten feed, CGF; tofu residue, TR; spent mushroom substrate from Pleurotus ostreatus, SMSP; brewers grain, BG) as ruminants feed. Three Hanwoo steers (40 months old, 520 ± 20.20 kg of body weight) fitted with a permanent rumen cannula and T-shaped duodenal cannula were used to examine of the BPF using in situ nylon bag and mobile bag technique. The bran CGF (19.2%) and food-processing residue BG (19.7%) had the highest CP contents than other feeds. The RUP value of bran RB (39.7%) and food-processing residues SMSP (81.1%) were higher than other feeds. The intestinal digestion of CP was higher in bran RB (44.2%) and food-processing residues BG (40.5%) than other feeds. In addition, intestinal digestion of Met was higher in bran RB (55.7%) and food-processing residues BG (44.0%) than other feeds. Overall, these results suggest that RB and BG might be useful as main raw ingredients in feed for ruminants. Our results can be used as baseline data for ruminant ration formulation.
        4,000원
        435.
        2018.05 구독 인증기관·개인회원 무료
        As the demand of fossil fuel has been increased, meeting future will be faced with exhausted non-renewable energy generation. In addition, there is a lot of expectation that fossil fuel resources are expected to get depleted in the end of century. Piezoelectric energy harvesting technology has significant advantages over other renewable energy sources such as solar panel, wind and geothermal energy. By using the pressure of vehicles, the piezoelectric energy transforms to electric energy by deformation of paving materials. There are many studies about this theme, only a few researches have been conducted on-site. It means that piezoelectric harvester is not available for roadway. Therefore, it is necessary to make it better a research framework that is available technology of piezoelectric materials and paving materials. The piezoelectric generator is tested before piezoelectric harvester manufacture for roadway. Each piezoelectric generator produces 9.38[mW/cm²] and piezoelectric harvester is manufactured by the number of 85 the piezoelectric generator. This harvester size has 50*20*9cm3 which is considered for wheel path of vehicle. When the chosen vehicle (about 2 ton) pass this harvester, the amount of electric energy is 255[W/m²] under 2[mm] of deformation and 30[km/h] of velocity. In this situation, the gathered energy is multiplied the maximum of voltage and electric current then divide it for the area of harvester. The test result is the temperature difference between the inside and outside after the thermal insulation coating process. When the external surface temperature is increased to 180 degrees, the internal temperature is kept 80 degrees even after about 30 minutes, indicating that the internal materials are protected from heat. In spite of many advantages with piezoelectric harvesting system, it is very hard to fit between roadway and harvester because of pavement damage. Most of paving material has a strong thickness. In this study, instead of asphalt and concrete pavement, the paving material is compound of poly-urethane to protect rutting and damage. To analysis for behavior, test is conducted by 90,000 times of wheel load on the pavement. The red line on the graph is commonly used asphalt pavement and the green one is polyurethane pavement. As it seemed that polyurethane pavement shows that the depth from wheel load is over 5 times better performance compared with asphalt pavement. Construction design is first of all, cutting off asphalt which is established before, then set up the tenth of piezoelectric harvesters, twenty fourth of road markers is installed into the roadway. Before filling up to space with polyurethane materials, wire arrangement and connect to controller. Each harvester is connected with controller that makes a signal for voltage, temperature sensor, water leak sensor. In order to use electric energy by harvester, road markers are selected, which each harvester has three of road markers. A circuit for lighting the light emitting device using the output of the harvester installed in the rest area was designed and manufactured. Basically, a circuit is configured to light up the harvester output, and a commercial power supply can be used in case the output of the harvester is reduced due to the durability thereof, and a controller is manufactured for each harvester to connect the road markers. Key Words: Piezoelectric Harvester
        436.
        2018.05 구독 인증기관·개인회원 무료
        To be better fit for highways, pavement systems are required to provide comfortable and safe driving and be structurally durable. Composite pavements can be an effective option as they are more durable by placing a high functional asphalt overlay on a rigid concrete base layer. In order to apply a composite pavement system to the field, it is necessary not only to develop technologies that prevent reflecting crack and deterioration of the base layer, but also to improve bonding performance of materials and ensure structural performance as a pavement system against traffic loading. In advanced countries like Japan, USA and Europe, high-functional composite pavement systems are being put into practice across new highway networks. In this study, we evaluated structural performance (rutting, reflecting crack, and deflection) by applying traffic loads of actual highways through an accelerated pavement tester (APT) of a composite pavement section made up of a quiet porous surface laid over a water-proofing layer, a continuously reinforced concrete base, and a lean concrete sub-base layer, which was developed with new pavement methods used for each layer prior to field application. The APT specimen was constructed with paving materials and equipment actually used on site in the same dimensions (W3.5m*L14m*H2m) as actual highway sections in Korea, and 3-axle double-wheel heavy load (45ton) cart type KALES(Korean Accelerated Loading and Environmental Simulator) traveling on the specimen in both directions was used to simulate traffic loading. After applying around 8,574,000 ESALs of traffic loads, no reflecting crack occurred on the asphalt surface of the composite pavement, without surface distress except for rutting. In order to examine what causes rutting of pavements, we surveyed thickness of pavements by layer and measured asphalt density.
        437.
        2018.05 구독 인증기관·개인회원 무료
        Roller Compacted Concrete Pavement (RCCP) is placed by roller compaction of a mixture of less cement and unit water content and more aggregates and provides excellent early strength development with the help of interlocking of aggregates and hydration. The unit cement content of RCC pavements accounts for 85% of conventional pavements, with low drying shrinkage. As low drying shrinkage leads to smaller crack widths than ordinary concrete, RCC pavements can help elevate reflecting crack resistance if applied to a base layer of a composite pavement system. In a composite pavement with an asphalt surface laid over a concrete base, pavement temperature change is important in predicting pavement performance. As movement of the lower concrete layer is determined by temperature depending on pavement depth, temperature data of the pavement structure serves as an important parameter to prevent and control reflecting crack. Among the causes of reflecting crack, horizontal behavior of the lower concrete layer and curling-caused vertical behavior of joints/cracks are considered closely related to temperature change characteristics of the lower concrete course (Baek, 2010). Previous studies at home and abroad about reflecting crack have focused on pavement behavior depending on daily and yearly in-service temperature changes of a composite pavement (Manuel, 2005). Until now, however, studies have not been conducted on initial temperature characteristics of concrete in composite pavements where asphalt surface is placed over an RCC base. Annual temperature changes of in-service concrete pavements go up to 60 ℃, and those of asphalt overlays become around the twice at 110 ℃. This study evaluated initial crack behavior of composite pavement by investigating pavement temperature by depth of an RCC base and analyzing joint movement depending on change to temperatures of continuously jointed pavements. Findings from the study suggest that in composite pavements and asphalt overlays, time of laying asphalt has an important impact on crack behavior and reflecting crack.
        438.
        2018.05 구독 인증기관·개인회원 무료
        Roller Compacted Concrete Pavement (RCCP) is a pavement placed and compacted using an asphalt paver and a compaction roller by applying a small amount of concrete mixture and shows excellent structural performance as a result of hydration reaction of cement and interlocking of aggregates by roller compaction. It also provides economic advantages over conventional concrete pavements by reducing unit cement content and construction period, simplifying construction process, and decreasing traffic closure time (Wayne, 2006). However, given that it tends to show lower IRI levels than common concrete pavements since its low unit water content and binder weight ratios make uniform quality control difficult and roller compaction after paving makes the surface irregular and rough, with rough profile at the bottom of the pavement being reflected on the surface, RCCP is used mainly in port and industrial roads for low speed (60km/h or less) traffic (Dale Harringtion, 2010; Gregory, 2009). In order to apply RCCP to high-speed roadways, diamond grinding (DG) or asphalt overlay that is highly effective in improving roughness is needed (Fares Abdo, 2014; Gregory, 2009). Applying DG over RCCP leads to excellent skid resistance and noise reduction effects as a great percentage of aggregates makes the pavement surface rough, enhancing durability of concrete and the life of DG functionality. In addition, RCCP can be used as a high performance base layer of composite pavements, as it can reduce reflecting cracking at joints and cracked sections thanks to early strength development and low drying shrinkage of concrete. In this study, we assessed longitudinal roughness improvement effects by roughness-affecting factor by applying DG methods and asphalt overlays to three RCCP sites with a variety of sub-structural conditions and analyzed the effects on roughness of existing RCC pavements depending on surfacing method (DG, APOverlay).
        439.
        2018.05 구독 인증기관·개인회원 무료
        In recent years, pavement distresses have been caused by diverse factors such as spalling, deterioration of repaired sections, blow-up, and alkali aggregate reaction due to changing climate environment of a concrete pavement and its construction and maintenance conditions (supply of materials, increase in use of de-icers, etc,). As a leading repair method for deteriorated concrete pavements, partial-depth repair is implemented in accordance with guidelines of material properties for joints of a concrete pavement and field application evaluation systems, but still some of the repaired sections become deteriorated again at an early stage due to poor construction quality and failure of response to environmental impacts. Distresses that can be corrected with partial-depth repairs are largely divided into those of repair materials and of the existing pavement bonded to repair materials, and combined distress of repair materials and the existing pavement. Although re-repair methods should be different by distress type and scale than conventional pavement repair methods, appropriate repair methods and guidance for re-repairs have not been in place so far, and therefore currently, re-repair practices follow the existing manual of partial depth repairs. Therefore, this study evaluated concrete bond characteristics by removing method and repair scope for an experimental section of frequently distressed pavements to determine a re-repair scope and method for deteriorated partial depth repair sections of concrete pavement, the number of which has increased over time.
        440.
        2018.05 구독 인증기관·개인회원 무료
        The composition of the deicer sprayed on the highway is spreading over the highway by the scattering or snow removal activity, or car movement and consequently affecting the vegetation environment around the highway. These are the cause of the damage of fruit trees and crops, and also the cause of corrosion of highway structures. The goal of this study is to estimate the detected range of deicer components from a highway. The concentration of the deicer components in gauze and soil were investigated according to the crossing distance from the highway. The data collected were then used to estimate the concentration range of deicer components in a rage of distance up to 100 m from the highway where the deicer was spread. The sample time and weight of gauze were measured before and after installation, and the soil was collected at more than three points in parallel with the highway at the gauze installation point. The components in gauze and soil were investigated in addition to the deicer components (Ca2+, Na+, Cl-) as well as Mg2+ and K+. As Ca2+ and Cl- components of deicer were affected by agricultural use, Na+ component was selected as a tracer and further SAR (Sodium Adsorption Ratio) of soil was analyzed to examine the degree of influence on vegetation indirectly. The gauze concentration was evaluated by the concentration of the deicer ingredient at the background concentration of the blank gauze. The total amount of the deicer sprayed in the study road for 4 months (winter season) was about 93 ton/km. In the gauze test, the spread of the deicer was detected at a distance of 100 m in study area, but the concentration of the deicer in the gauze by distance decreased rapidly within 10 m from the highway. And concentration of the deicer components in gauze and soil came down after rainy season (August ~ Sep.). The results showed that the components of the deicer could be spread widely by the wind. The effective range of the deicer on vegetation based on SAR in soil was estimated to be less than 20 m from the highway. This study examines the concentration changes of the deicer components in gauze and soils and shows that deicer components sprayed on the highway are accumulated and moved over time by wind, snow removal, terrain, water system and land use around the highway.