검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 781

        601.
        2012.09 서비스 종료(열람 제한)
        Human embryonic stem cells (hESCs) are promising cell source because of their unique self-renewal and pluripotency. Although hESC-derived cardiac cells are currently generated worldwide, cryopreservation of these cells is still limited due to low rate of post-thaw survival. Cryopreservation of hESC-derived cardiac cells is critical in that their long-term storage can accelerate their use in regenerative medicine. However, to date, there are few reports on efficient cryopreservation and post-thaw survival of hESC-derived cardiac cells. In this study, we evaluated the effects of ginsenoside, which is known to improve survival of rat embryonic cardiomyocytes against myocardial ischemia injury in diabetic rats (Wu et al., 2011), on the survival of hESC-derived cardiac cells after thawing. We induced differentiation into cardiac cells using our previously reported method (Kim et al., 2011). Differentiated, pre-beating stage cardiac cells were cryopreserved using either mass cryopreservation or vitrification. To evaluate the effects of ginsenoside (Re, Rb), we compared three sets: pre- and post-thaw treatment, pre- or post-thaw treatment only. The survival of post-thaw cardiac cells were evaluated using Trypan-blue and Annexin V staining. In addition, the three groups were treated with ROCK inhibitor Y-27632, and compared with non-treatment groups. The effect of ginsenoside was significant in post-thaw treatment group, i.e, thawed cells expressed cardiac specific genes and showed specific functionality such as spontaneous beating. Taken together, we demonstrated favorable effects of ginsenoside on the survival of hESC-derived cardiac cells after cryopreservation and thawing. These results suggest a possible application of well-known cardioprotectant ginsenoside in cell-based tissue engineering using hESC-derived cardiac cells.
        602.
        2012.07 서비스 종료(열람 제한)
        R genes are a key component of genetic interactions between plants and biotrophic bacteria and are known to regulate resistance against bacterial invasion. The most common R proteins contain a nucleotide-binding site and a leucine-rich repeat (NBS-LRR) domain. Some soybean NBS-LRR genes have also been reported to function in disease resistance. A total of 319 genes were determined to be putative NBS-LRR genes in the soybean genome. The number of NBS-LRR genes on each chromosome was highly correlated with the number of disease resistance QTL in the 2-Mb flanking regions of NBS-LRR genes. In addition, the recently duplicated regions contained duplicated NBS-LRR genes and duplicated disease resistance QTL, and possessed either an uneven or even number of NBS-LRR genes on each side. The significant difference in NBS-LRR gene expression between a resistant near-isogenic line (NIL) and a susceptible NIL after inoculation of Xanthomonas axonopodis pv. glycines supports the conjecture that NBS-LRR genes have disease resistance functions in the soybean genome. The number of NBS-LRR genes and disease resistance QTL in the 2-Mb flanking regions of each chromosome was significantly correlated, and several recently duplicated regions that contain NBS-LRR genes harbored disease resistance QTL for both sides. In addition, NBS-LRR gene expression was significantly different between the BLP-resistant NIL and the BLP-susceptible NIL in response to bacterial infection. From these observations, NBS-LRR genes are suggested to contribute to disease resistance in soybean. Moreover, we propose models for how NBS-LRR genes were duplicated, and apply Ks values for each NBS-LRR gene cluster.
        603.
        2012.07 서비스 종료(열람 제한)
        Gene expression profiles can serve as a valuable reference for deciphering gene functions. We exploited the potential of whole genome microarrays to measure the temporal expression profiles of rice genes in 13 stages of reproductive development. We could profile expression of 17,676 genes in at least one of the tissues. Differential expression analysis with compare to leaf and preceding stages of development revealed reproductive stage-preferential/-specific genes. we identified 35 genes expressing specifically during panicle and seed development. The metabolic/hormonal pathways and transcription factor families playing key role in reproductive development were elucidated after overlaying the expression data on the public databases and manually curated list of transcription factors, respectively. During floral meristem differentiation (P1cm) and male meiosis (P5cm), the genes involved in jasmonic acid and gebbellin biosynthesis were significantly upregulated. F11DAP stage of seed, containing enlargement organ, exhibited enrichment of transcripts involved in starch or sucrose biosynthesis. Genes regulating auxin biosynthesis were induced during early seed development. We validated the stage-specificity of regulatory regions of two panicle-specific genes, AK072471, Os08g0538700, and AK121412, an early seed-specific gene, in transgenic rice. The data generated here provides a snapshot of the underlying complexity of the gene networks regulating rice reproductive development.
        604.
        2012.07 서비스 종료(열람 제한)
        In order to adapt to various environmental stresses, plants have employed diverse regulatory mechanisms of gene expression. Epigenetic changes, such as DNA methylation and histone modifications play an important role in gene expression regulation under stress condition. It has been known that some of epigenetic modifications are stably inherited after mitotic and meiotic cell divisions, which is known as stress memory. To understand molecular mechanisms underlying stress memory mediated by epigenetic modifications, we developed Arabidopsis suspension-cultured cell lines adapted to high salt by stepwise increases in the NaCl concentration up to 120 mM. Adapted cell line to 120 mM NaCl, named A120, exhibited enhanced salt tolerance compared to unadapted control cells (A0). Moreover, the salt tolerance of A120 cell line was stably maintained even in the absence of added NaCl, indicating that the salt tolerance of A120 cell line was memorized even after the stress is relieved. By using salt adapted and stress memorized cell lines, we intend to analyze the changes of DNA methylation, histone modification, transcriptome, and proteome to understand molecular mechanisms underlying stress adaptation as well as stress memory in plants.
        605.
        2012.07 서비스 종료(열람 제한)
        Korean soybean variety Kwangan was transformed with coat protein (CP), helper component-proteinase (HC-Pro), and ABRE binding factor 3 (ABF3) genes using highly efficient soybean transformation system. Among these genes, CP and HC-Pro were transformed using RNAi technology. Transgenic plants with CP were confirmed for gene introduction and their expression using PCR, real-time PCR, RT-PCR, Southern blot, and Northern blot. To investigate the response of viral infection with CP, T1 plants were inoculated with SMV-infected leaves and confirmed the existence of mosaic symptom in both leaves and seeds. Two transgenic lines with CP were highly resistant to SMV with clear leaves and seeds while SMV-susceptible lines showed mosaic symptom with seed mottling. The transcript levels of T1 plants with CP were also determined by northern blot, suggesting that SMV-resistant T1 plants did not show viral RNA expression whereas SMV-susceptible T1 plants showed viral RNA expression. Currently, the response of viral infection with HC-Pro is investigating to produce SMV-resistant soybean transgenic plants, and the physiological experiment with ABF3 is also carrying out to produce drought-tolerant soybean transgenic plants.
        606.
        2012.03 KCI 등재 서비스 종료(열람 제한)
        Wild rice might have previously unidentified genes important for disease resistance and stress tolerance in response to biotic and abiotic stresses. A set of subtractive library was constructed both from leaves of wild rice plants, Oryza grandiglumis (CCDD, 2n=48), treated with fungal elicitor and from wounded leaves. A partial fragment that was homologous to PR10 genes from other plant species was identified via suppression subtractive hybridization and cDNA macroarray. The obtained full-length cDNA sequence (OgPR10) contains an open reading frame of 480 bp nucleotide, encoding 160 amino acids with a predicted molecular mass of 16.944 kDa and an isoelectric point (pI) of 4.91. The multiple alignment analyses showed the higher sequence homology of OgPR10 with PR10 genes identified in rice plants at amino acid level. The OgPR10 mRNA was not expressed by treatment with wounding, jasmonic acid, and salicylic acid, but markedly expressed in leaves treated with protein phosphatase inhibitors cantharidin and endothall, and yeast extract. In addition, the expression of OgPR10 mRNA was induced within 72 h after treatment with probenazole, one of well-known chemical elicitors, and reached the highest level at 144 h. Heterologous expression of OgPR10 caused growth inhibition and seedling lethality in E. coli and Arabidopsis, respectively. Chemically induced OgPR10 expression with glucocorticoid-mediated transcriptional induction system further reconfirmed its lethality on Arabidopsis seedling. In addition, OgPR10-expressing rice plants, Oryzae sativar were resistant against the infection of rice blast fungus, Magnaporthe grisea. These results indicate that OgPR10 is involved in probenazole- and microbe associated molecular patterns-mediated disease resistance responses in plants and is a potential gene for developing disease resistance crop plants.
        607.
        2011.10 KCI 등재 서비스 종료(열람 제한)
        Apricot (Prunus armeniaca L.) cultivars show a gametophytic self-incompatibility (GSI) system, like other fruit species of Rosaceae family. Thus, it is necessary to determine their S-genotypes in order for stable fruit set in commercial cultivation. S-genotypes of apricots were determined by PCR and test crosses. Three sets of consensus primers designed from Prunus S-RNases were used to amplify fragments containing the first and second S-RNase intron, respectively. Through the results obtained from the 3 PCRs, we could identify SI genotypes of 33apricot cultivars. Several cultivars such as 'Heiwa', 'Yamagata No.3' and 'Shinsuoomi' had the self-compatible (Sc) allele. Self-pollination tests revealed that cultivars with Sc allele were self-compatible. Cross-pollination tests confirmed that there was cross-incompatibility between the cultivars with the same S-genotypes. These results might be very useful for growers for effective pollination and for breeders using these in cross breeding programs.
        618.
        2011.09 서비스 종료(열람 제한)
        Human embryonic stem cells (hESCs) have the potential for use in regenerative medicine and in the field of basic research. Therefore, effective cryopreservation and storage of hESCs are important for preservation of newly established cell line for various purposes. Despite poor survival and slow recovery after thawing, the conventional slow freezing method is most commonly used for cryopreservation of hESCs due to its simplicity and ease of use for freezing a large number of hESCs appropriate to clinical applications. Here we controlled the clump size (Group Ⅰ; 400~450 ㎛, Group Ⅱ; 800~900 ㎛, and Group Ⅲ; 1500~1700 ㎛) of hESCs at 5 days after plating using a glass pipette during cryopreservation in order to obtain a larger amount of hESCs after thawing. Attachment rates differed significantly (P<0.05) in each of the three groups and the average of attachment rate of GroupⅡ was highest in SNUhES4 and H1. In particular, the attachment rate of Group Ⅱ in SNUhES3 showed a significant improvement with ROCK inhibitor Y-27632. These results indicate that clump size and cell-cell adhesions of GroupⅡ are appropriate for cryopreservation compared to the Group Ⅰ and Group Ⅲ. This method increased cell viability and reduced the recovery time leading to various experiments, and therefore has an advantage for use with hESCs like newly established in particular. We demonstrated that use of this effective cryopreservation method with control of the clump size of hESCs can effectively improve the attachment rate and survival of post-thaw hESCs with and without Y-27632.
        620.
        2010.08 KCI 등재 서비스 종료(열람 제한)
        TILLING (Targeting Induced Local Lesions IN Genomes) is broadly regarded as an excellent methodology for reverse genetics applications. Approximately 15,000 M3 TILLING lines have been developed via the application of gamma-ray irradiation to rice seeds (cv. Donganbyeo), followed by subsequent selections. In an effort to evaluate the genetic diversity of the TILLING population, we have employed the AFLP multiple dominant marker technique. A total of 96 (0.64%) TILLING lines as well as Donganbyeo were selected randomly and their genetic diversity was assessed based on AFLP marker polymorphisms using 5 primer combinations. An average of 100.4 loci in a range of 97 to 106 was detected using these primer combinations, yielding a total of 158 (31.4%) polymorphic loci between Donganbyeo and each of the 96 lines. A broad range of similarity from 80% to 96% with an average of 89.4% between Donganbyeo and each of the 96 lines was also observed, reflecting the genetic diversity of the TILLING population. Approximately 28 polymorphic loci have been cloned and their sequences were BLAST-searched against rice whole genome sequences, resulting in 20 matches to each of the gene bodies including exon, intron, 1 kb upstream and 1 kb downstream regions. Six polymorphic loci evidenced changes in the coding regions of genes as compared to the rice pseudomolecules, 4 loci of which exhibited missense mutations and 2 loci of which exhibited silent mutations. Therefore, the results of our study show that the TILLING rice population should prove to be a useful genetic material pool for functional genomics as well as mutation breeding applications.