검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,565

        161.
        2022.10 구독 인증기관·개인회원 무료
        Plastic scintillators can be used to find radioactive sources for portal monitoring due to their advantages such as faster decay time, non-hygroscopicity, relatively low manufacturing cost, robustness, and easy processing. However, plastic scintillators have too low density and effective atomic number, and they are not appropriate to be used to identify radionuclides directly. In this study, we devise the radiation sensor using a plastic scintillator with holes filled with bismuth nanoparticles to make up for the limitations of plastic materials. We use MCNP (Monte Carlo N-particle) simulating program to confirm the performance of bismuth nanoparticles in the plastic scintillators. The photoelectric peak is found in the bismuth-loaded plastic scintillator by subtracting the energy spectrum from that of the standard plastic scintillator. The height and diameter of the simulated plastic scintillator are 3 and 5 cm, respectively, and it has 19 holes whose depth and diameter are 2.5 and 0.2 cm, respectively. As a gamma-ray source, Cs-137 which emits 662 keV energy is used. The clear energy peak is observed in the subtracted spectrum, the full width at half maximum (FWHM) and the energy resolution are calculated to evaluate the performance of the proposed radiation sensor. The FWHM of the peak and the energy resolution are 61.18 keV and 9.242% at 662 keV, respectively.
        162.
        2022.10 구독 인증기관·개인회원 무료
        Radioactive source terms are important factor in design, licensing and operation of SMR (Small Modular Reactor). In this study, regulatory requirements and evaluation methodology for normal operation on NuScale SMR, which received standard design certification approval on September 11, 2020 from US NRC, are reviewed. The radioactive waste management system of nuclear power reactor should be designed to limit radionuclide concentration in effluents and keep radioactive effluents at restricted area boundary ALARA according to 10 CFR 20 and 10 CFR 50 Appendix I. Also, in general, the coolant source term to calculate the off-site radiological consequences for normal operation of SMR should be determined by using models and parameters that are consistent with regulatory guide 1.112, NUREG- 0017 and the guidance provided in ANSI/ANS-18.1-1999, and the result should be corrected by reflecting the design characteristics of SMR. The coolant source term of NuScale, unlike the case of large NPPs, cannot rely solely on empirical source term data, because the NuScale source term is based on first principle physics, operational experience from recent industry, and lessons learned from large PWR operation. Fission products in reactor coolant are conservatively calculated using first principle physics in SCALE Code assuming 60 GWD/MTU. The release of fission products from fuel to primary coolant based on industry operational experience is determined as fuel failure fraction of 0.0066% for normal operation source term and 0.066% for design basis source term while coolant source term of large NPP is calculated by using ANSI/ANS-18.1 for normal operation and fuel failure fraction of 1% for design basis source term. Water activation products in reactor coolant are calculated from first principles physics and corrosion activation products are calculated by utilizing current large PWR operating data (ANSI/ANS 18.1- 1999) and adjusted to NuScale plant parameters. Also, because ANSI/ANS 18.1-1999 is not based on first principle physics models for CRUD generation, buildup, transport, plate-out, or solubility, NuScale has incorporated lessons learned by using ERPI’s primary water chemistry and steam generator guidelines to ensure source term is conservative and design of materials used cobalt reduction philosophy to help ensure the coolant source term are conservative. Based on the coolant source term calculated according to the above-described method, the annual releases of radioactive materials in gaseous and liquid effluents from NuScale reactor are evaluated. Currently, Small Modular Reactors such as ARA, SMART 100 are under review for licensing in Korea. This study will be helpful to understand how the reactor coolant system source terms are defined and evaluated for SMR.
        163.
        2022.10 구독 인증기관·개인회원 무료
        An induction melting facility includes several work health and safety risks. To manage the work health and safety risks, care must be taken to identify reasonably foreseeable hazards that could give rise to risks to health and safety, to eliminate risks to health and safety so far as is reasonably practicable. If it is not reasonably practicable to eliminate risks to health and safety, attention have to be given to minimize those risks so far as is reasonably practicable by implementing risk control measures according to the hierarchy of control in regulation, to ensure the control measure is, and is maintained so that it remains, effective, and to review and as necessary revise control measures implemented to maintain, so far as is reasonably practicable, a work environment that is without risks to health or safety. The way to manage the risks associated with induction melting works is to identify hazards and find out what could cause harm from melting works, to assess risks if necessary – understand the nature of the harm that could be caused by the hazard, how serious the harm could be and the likelihood of it happening, to control risks – implement the most effective control measures that are reasonably practicable in the circumstances, and to review control measures to ensure they are working as planned.
        164.
        2022.10 구독 인증기관·개인회원 무료
        Molten Salt Reactor, which employs molten salt mixture as fuel, has many advantages in reactor size and operation compared to conventional nuclear reactor. In developing Molten Salt Reactor, Offgas system should be properly designed since the fission products in off-gas accelerates the corrosion in reactor structure materials and deteriorates the purity of liquid fuel. The design of off-gas system therefore requires the preliminary study of the behavior of evolved fission products in off-gas units and the development of off-gas model is crucial in developing such system. In this study, we corrected the off-gas illustrative model proposed by ORNL (Nuclear Engineering and Design, vol 385(15) 111529, 2021) by employing physically consistent concept of capture rate of fission product and holdup. For the application of the corrected off-gas model to Chloride-based 6 MW Molten Salt Reactor, major fission products were firstly determined from OpenMC based neutronics calculation and chain reaction related to the major fission products were defined. Based on these data, the holdup behavior of fission products in off-gas units (decay tank, caustic scrubber, Halide trap, H2O trap and charcoal bad) were investigated.
        165.
        2022.10 구독 인증기관·개인회원 무료
        Encapsulation using cement as a solidification method for disposal of radioactive waste is most commonly used in most advanced countries in the nuclear technology to date due to its advantages such as low material cost and accumulated technology. However, in case of cement solidification, since moisture or hydroxyl group in cement is decomposed by radioactivity, it may happen that gas is generated, structural stability is weakened, and leachability is increased due to low chemical durability. Therefore, the various new solidification methods are being developed to replace it. As one of these alternative technologies, for dispersible metal compounds generated through the incineration replacement process, the study on engineering element technology for powder metallurgy is under way, which overcomes the interference problem between mechanical elements and media that may occur during the process such as the homogeneous mixing process of the target powder substance and additives used in the powder metallurgy concept-based sintering process for the solidification of the final glass composite material (GCM), the process of creating a compressed molded body using a specific mold, the process of final sintering treatment. The solidification process of dispersible radioactive waste can be largely divided into pre-treatment stage, molding stage, and sintering stage, and the characteristics of the final radioactive waste solidification material can vary depending on the solidification treatment characteristics of each stage. In relation with these characteristics, the matters to be considered when designing device for each stage to solidify dispersible radioactive waste (property of super-mixing device for homogenized powder formation, structural geometry and pressure condition of molding device for production of compressed molded body, temperature and operation characteristics of sintering device for final glass composite material (GCM), etc.) are drawn out. It is expected that the solidification device design reflecting these considerations will meet all disposal conditions of radioactive waste material, such as compressive strength and leaching characteristics of solidified radioactive waste material, and create a uniformized solidification of radioactive waste material.
        169.
        2022.10 구독 인증기관·개인회원 무료
        Korea Radioactive Waste Agency (KORAD), regulatory body and civic groups are calling for an infrastructure system that can more systematically and safely manage data on the results of radioactive waste sampling and nuclide analysis in accordance with radioactive waste disposal standards. To solve this problem, a study has been conducted on the analysis of the nuclide pattern of radioactive waste on the nuclide data contained in low-and intermediate-level radioactive waste. This paper will explain the optimal repackaged algorithm for reducing radioactive waste based on previous research results. The optimal repackaged algorithm for radioactive waste reduction is comprised based on nuclide pattern association indicators, classification by nuclide level of small-packaged waste, and nuclide concentration. Optimization simulation is carried out in the order of deriving nuclide concentration by small-packaged, normalizing drum minimization as a function of purpose, normalizing constraints, and optimization. Two scenarios were applied to the simulation. In Scenario 1 (generating facilities and repackaged by medium classification without optimization), it was assumed that there are 886 low-level drums and 52 very low-level drums. In Scenario 2 (generating facilities and repackaged by medium classification with optimization), 708 and 230 drums were assigned to the low-level and very low-level drums, respectively. As a result of the simulation, when repackaged in consideration of the nuclide concentration and constraints according to the generating facility cluster & middle classification by small package (Scenario 2) the low-level drum had the effect of reducing 178 drums from the baseline value of 886 drums to 708 drums. It was found that the reduced packages were moved to the very low-level drum. The system that manages the full life-cycle of radioactive waste can be operated effectively only when the function of predicting or tracking the occurrence of radioactive waste drums from the source of radioactive waste to the disposal site is secured. If the main factors affecting the concentration and pattern of nuclides are systematically managed through these systems, the system will be used as a useful tool for policy decisions that can prevent human error and drastically reduce the generation of disposable drums.
        176.
        2022.10 구독 인증기관·개인회원 무료
        Dry head end process is developing for pyro-processing at KAERI (Korea Atomic Energy Research Institute). Dry processes, which include disassembling, mechanical decladding, vol-oxidation, blending, compaction, and sintering shall be performed in advance as the head-end process of pyro-processing. Also, for the operation of the head-end process, the design of the connecting systems between the down ender and the dismantling process is required. The disassembling process includes apparatus for down ender, dismantling of the SF (Spent Fuel) assembly (16×16 PWR), rod extraction, and cutting of extracted spent fuel rods. The disassembling process has four-unit apparatus, which comprises of a down ender that brings the assembly from a vertical position to a horizontal position, a dismantler to remove the upper and bottom nozzles of the spent fuel assembly, an extractor to extract the spent fuel rods from the assembly, and a cutter to cut the extracted spent fuel rods as a final step to transfer the rod-cuts to the mechanical decladding process. An important goal of dismantling process is the disassembling of a spent nuclear fuel assembly for the subsequent extraction process. In order to design the down ender and dismantler, these systems were analyzed and designed, also concept on the interference tools between down ender and dismantler were considered by using the solid works tool.
        179.
        2022.10 구독 인증기관·개인회원 무료
        The Korea Atomic Energy Research Institute is developing a nuclide management process that separates high heat, high mobility, and long half-life nuclides that burden the disposal of spent fuel, and disposes of spent fuel by nuclide according to the characteristics of each nuclide. Various offgases (volatile and semi-volatile nuclides) generated in this process must be discharged to the atmosphere below the emission standard, so an off-gas trapping system is required. In this study, we introduce the analysis results of the parameters that affect the design of the off-gas trapping system. The analyzed contents are as follows. The physical quantities of the Cs, Tc/se, and I trapping filters according to the amount of spent nuclear fuel, the maximum exothermic temperature of the Cs trapping filter and the absorbed dose by distance by Cs radioactivity were analyzed according to the amount of spent nuclear fuel. In addition, a three-dimensional CFD (Computational Fluid Dynamics) analysis was performed according to operating parameters by simply modeling the off-gas trapping system, which is easy to modify mechanical design parameters. It is considered that the analysis results will greatly contribute to the development of the off-gas trapping system design requirements.