Background : This study was carried out to investigate the changes to fatty acid, mineral, and ginsenosides contents in ginseng seed when they were stratified for different length of time and to determine whether variety had any effects on the changes. The aim was to improve the ginseng seed stratification process.
Methods and Results : The ginseng varieties used were Geumpoong, Chunpoong, Yunpoong, and K-1. Stratifying periods treated on ginseng seed were 0, 20, 40, 60, 80, and 100 days. The main fatty acids of ginseng seed were oleic acid (C18 : 1, n9c) with a content of 78.40 - 79.20% followed by linoleic acid (C18 : 2, n6c). The main mineral in the seeds was potassium (K), at 1208.2 - 1337.6 ㎎/100 g. The main ginsenosides in ginseng seed were ginsenoside Re and Rb1. Increasing the length of the stratification periods led to increases in oleic acid content (60 - 80 days), however after this the content declined. In contrast, linoleic acid content fell as the stratification period increased. K, P, Mg, Ca and Na content rose as the stratification period increased. The ginsenoside Re content of Chunpoong and K-1 cultivar seeds also rose as the stratification period increased which meant that total ginsenoside content increased. However, ginsenoside Re content rose in Geumpoong and Yunpoong seeds, but total ginsenoside content decreased as the stratification period increased.
Conclusions : Some beneficial compound in ginseng seed rose as the stratification period increased. Therefore, ginseng seed stratification could improve the food value of ginseng.
고품질 우량인삼 생산을 위한 해가림자재별 인삼의 생육 상황과 해가림 아래의 미기상 변화를 조사하였고, 각각의 해가림자재에서 생산된 수삼의 유효성분들을 조사 분석한 결과, 6~8월까지의 해가림자재별로 온도는 차광지>차광판> 차광지 순이었고, 투광량도 차광지가 8월에 381.7 μmol/s/m2 로 인삼포내 온도가 가장 높은 원인이었다. 2~3년 인삼의 지상부 생육은 차광망>차광판>차광지 순이었으며, 4년근은 차광판=차광지>차광망 순으로 좋았다. 4년근 인삼의 진세 노사이드 총함량은 차광판>차광지>차광망 순으로 많았으 며, 수삼의 색도는 차광망>차광판>차광지 순으로 높았다
Anti-inflammatory activity of the extracts of ginseng berry (GBE) was investigated through the evaluation of its inhibitory effect on the production of inflammatory meditator, nitric oxide(NO), tumor necrocis factor-alpha (TNF-α), interleukin-6 (IL-6) in LPS-induced RAW264.7 macrophage cells. GBE was fractionated using n-hexane, chloroform, ethylacetate, buthanol and H2O, sequentially. RAW264.7 cells were induced 100ng/mℓ of lipopolysaccharide (LPS) and treated with 0, 1.6, 8, 40 and 200μg/mℓ of GBE fractions. LPS-induced NO production on all of GBE fractions was inhibited with increasing added concentration of GBE fractions. Chloroform fraction of GBE was the most effective in inhibiting LPS-induced TNF-α production. Hexane, chloroform and H2O fractions of GBE exhibit strong inhibition LPS-induced IL-6 production. Especially, H2O fractions of GBE was the most effective in inhibiting LPD-induced IL-6 production without significant cytotoxicity in RAW264.7 cells, and reduced the activation of mitogen-activated protein kinases (MAPK) and IkB phosphorylation. These results indicate that H2O fractions of GBE exhibits strong anti-inflammatory effects by inhibition of NF-kB by inhibition of p-38 on MAPK and IkB phosphorylation.
This study investigated ginseng growth and ginsenoside contents after control a reserved ginseng cultivation land using various green manure crops for stable ginseng cultivation. Followings are results obtained from this research. After cultivate the green manure crops, microbial flora in soil was diversified, organic matter and total-N content increased, but salt content decreased. The highest output obtained from the wheat cultivated area among various green manure corps. Growth of shoot and root of two years old ginseng increased significantly at the green manure crop cultivated area. Specially, the wheat cultivated area was the most effective in growth. Also, the rate of the leaf discoloration at the aerial part and the rusty root at the root was the least at the wheat cultivation area. Meanwhile, the ginsenoside content was the most at the wheat cultivation area. Thus, the reserved ginseng cultivation land could be managed by cultivating wheat for effective ginseng growth.