In general, stepwise hot steaming process is known to be effective in improving its biological activities; however, not much employed in processing Codonopsis lanceolata due to its hardness. In this study, C. lanceolata was first pretreated with warm water at 50℃ and 60℃ for two hours, then steamed for 3 hours. Antioxidant activities of 70% ethanol extracts were compared with the extract from the water solvent: 41.58% vs 8.98% of DPPH radical scavenging activity in adding 1.25mg/ml of steamed extract and water extract, respectively. Reducing power of steamed and fresh C. lanceolata were also measured as 1.39 and 0.71. Total poly phenolic of the steamed extract was estimated as 12.11mg/g, compared to 3.98mg/g fresh C. lanceolata. Total flavonoid contents were also obtained as 11.48mg/g, compared to 7.11mg/g of fresh C. lanceolata. In comparing phenolic acids profiles in the extract, in general higher amounts of gallic acid, trans-ferulic acid, vanillic acid were obtained possibly by easy release of active components during thermal processing, which results in better antioxidant activities than that of water extract. This findings can also be supported by result that the ethanol extract showed better activities than the water extract.
In this study, we investigated the cosmetic application of Acer mono sap through an ultra-high pressure process. Exposing Acer mono sap to a ultra-high pressure process resulted in 90.1% cell viability of human normal fibroblast cells (CCD-986sk) when added at the highest concentration. Acer mono sap also showed the hightest free radical scavenging activity after the ultra high pressure process. The melanogenesis inhibition rate in cloned M-3 cells was 59.0%. Tyrosinase was inhibited at a rate of 87.2% by adding 100% HPAMS. Anti-wrinkle activity was 78.1%. Acer mono sap showed enhanced storage following the ultra high pressure process. These results indicate that Acer mono sap may be a source for functional cosmetic agents capable of improving antioxidant, whitening, and antiwrinkling effects.
This study was to investigate the effect of fermentation extracts on the concentration of serotonin and melatonin in the serum of the ICR mice. The ICR mice were divided into water control group, lactobacillus fermentation solution including (Lactobacillus paracasei and Bifidobacterium longum B6) control group, positive control group (milk and doxylamine succinate), negative control group (caffein) and the groups treated with the extracts of Berberis koreana bark (WE: water extracts, FE-L.P: fermentation extracts of Lactobacillus paracasei, FE-B.L: fermentation extracts of Bifidobacterium longum B6). After ten-day feeding treatment, the mean concentration of serotonin for water control, WE, FE-L.P and FEB. L group was 134.72, 183.01, 232.09 and 223.78 ng/ml, respectively. The mean concentration for FE-L.P and FE-B.L group were approximately 66% larger than that for water control group. The mean concentration of melatonin for water control, WE, FE-L.P and FE-B.L group was 76.92, 106.66, 157.56 and 141.81pg/ml, respectively. The mean concentration of melatonin for FE-L.P and FE-B.L group were also larger than that for water control group. Our results indicated that the fermentation extracts of Berberis koreana bark have relatively greater potential to induce secretion of serotonin and melatonin. Therefore, the fermentation extracts have antidepressant effect.
In this study, whitening activity of Lithospermum erythrorhizon extracts were investigated according to several extraction processes: water extraction at 100℃ (WE100) and 60℃ (WE60), 70% ethyl alcohol extraction (EE) and ultra high pressure extraction (HPE) at 500 MPa for 30 minutes at 60℃. The extracts from ultra high pressure extraction showed the highest tyrosinase inhibition and melanogenesis inhibition activities as 52% and 79.5%, respectively, in adding 1mg/ml than others extraction processes. HPE extracts also showed the strong reducing power as 3.19 that absorbance at 450 mm. The contents of polyphenol in WE100, we measured as 10.1μg/ml in adding 1mg/ml. Extracts have a high total flavonoid contents by HPE as 4.1μg/ml at 1mg/ml. We can conclude that better whitening activity of extracts from high pressure extraction was due to high antioxidant activities which could be extracted by higher polyphenol and flavonoid contents in HPE than others.
This study was performed to compare the effects of immuno-modulating activities of Rhodiola sachalinensis A. Bor. fractionized by consecutive solvent separation. The Cytotoxicity of all fractionized extracts on human kidney cell (HEK293) was lower than crude extracts. Generally, the butanol and chloroform extracts showed less cytotoxicity on about 10.07% and 9.67% than the crude extracts. For human immune B and T cell growth, chloroform fraction showed the highest cell growth compared to the control. The secretion of cytokines (IL-6, TNF-α) on human B and T cells were increased by adding chloroform extracts. Also, NK cell growth was significantly improved up to nearly 30% by adding the supernatant of B cell medium grown with the chloroform fraction. It was also found that chloroform fraction could yield higher nitric oxide production from macrophage than untreated control cells. Differentiation of HL-60 cells was increased up to 131.9% after treatment with chloroform fraction extracts, compared to the control. These results indicate that the chloroform fraction of R. sachalinensis have high immune activation activity than others fractions and the crude extracts, implying that this chloroform fractions could be used a new functional material.