Porous ceramics are used in various industrial applications based on their physical properties, including isolation, storage, and thermal barrier properties. However, traditional manufacturing environments require additional steps to control artificial pores and limit deformities, because they rely on limited molding methods. To overcome this drawback, many studies have recently focused on fabricating porous structures using additive manufacturing techniques. In particular, the binder jet technology enables high porosity and various types of designs, and avoids the limitations of existing manufacturing processes. In this study, we investigated process optimization for manufacturing porous ceramic filters using the binder jet technology. In binder jet technology, the flowability of the powder used as the base material is an important factor, as well as compatibility with the binder in the process and for the final print. Flow agents and secondary binders were used to optimize the flowability and compatibility of the powders. In addition, the effects of the amount of added glass frit, and changes in sintering temperature on the microstructure, porosity and mechanical properties of the final printed product were investigated.
Porous ceramics have the advantages of low density, low thermal conductivity, and excellent mechanical properties. Among porous ceramic manufacturing methods, the replica template method allows the easy manufacturing of porous filters with the highest porosity and pores of the desired size, but it also has the disadvantage that the resulting filters have low mechanical strength. To overcome this shortcoming, mullite (3Al2O3·2SiO2) whiskers, which have excellent thermal stability and high mechanical strength, were introduced in porous ceramic structure. The mullite whiskers were synthesized using a composition of Al2O3, flyash and MoO3. The morphologies and crystal structures of the mullite whiskers with MoO3 contents were investigated in detail. When the porous ceramic with mullite whiskers was fabricated using 20 wt% MoO3 catalyst the most uniform microstructure was obtained, and the mullite whiskers showed the highest aspect ratio of 47.03. The porosity and compressive strength of the fabricated porous ceramic were 82.12% and 0.83 MPa, respectively.
In this study, Noise was measured and its frequency size and characteristics were analyzed in office spaces. In order to improve the noise environment, the sound masking technology was used to extract and apply pink noise-based sound masking content suitable for it to obtain a noise reduction effect by improving the noise environment. As a result of this study, We think that the problem of spatial noise can be further improved and changed by mixing these sound masking systems as noise blocking facilities through appropriate harmony with interior facilities from architectural acoustics to construction. It was confirmed that there is an effect of improving the noise environment not only for blocking or improving external inflow noise, but also for various noises generated indoors, such as call centers.
In this study, a spray dryer is used to make granules of Y2O3 and YF3, and then Y5O4F7 is synthesized following heat treatment of them under Ar gas atmosphere at 600 oC. Single and binary monomer mixtures are compared and analyzed to optimize photocurable monomer system for DLP 3D printing. The mixture of HEA and TMPTA at 8:2 ratio exhibits the highest photocuring properties and low viscosity with shear thinning behavior. The optimized photocurable monomer and synthesized Y5O4F7 are therefore mixed and applied to printing process at variable solid contents (60, 70, 80, & 85 wt.%) and light exposure times. Under optimal light exposure conditions (initial exposure time: 1.2 s, basic exposure time: 5 s), YOF composites at 60, 70 & 80 wt.% solid contents are successfully printed. As a result of measuring the size of the printed samples compared to the dimensions of the designed bar type specimen, the deviation is found to increase as the YOF solid content increases. This shows that it is necessary to maximize the photocuring activity of the monomer system and to optimize the exposure time when printing using a high-solids ceramic slurry.
Ink-jet printing is a manufacturing process technology that directly prints a digitalized design pattern onto a substrate using a fine ink jetting system. In this study, environmentally friendly yellow aqueous ceramic ink is synthesized by mixture of distilled water, yellow ceramic pigment and additives for ink-jet printing. The graft polymer, which combines electrostatic repulsion and steric hindrance mechanism, is used as a surfactant for dispersion stability of aqueous ceramic ink. Synthesized ceramic ink with graft polymer surfactant shows better dispersion stability than did ceramic ink with PAA surfactant; synthesized ink also shows desirable ink-jet printability with the formation of a single ink droplet during printability test. Finally, ceramic ink printed on glass substrate and ceramic ink with graft polymer surfactant shows a high contact angle without surface treatment on glass substrate. Consequently, it is confirmed that the ceramic ink with graft polymer surfactant can achieve high printing resolution without additional surface treatment process.
As automation systems become more common, there is growing interest in functional labeling systems using organic and inorganic hybrid materials. Especially, the demand for thermally and chemically stable labeling paper that can be used in a high temperature environment above 300 oC and a strong acid and base atmosphere is increasing. In this study, a composite coating solution for the development of labeling paper with excellent thermal and chemical stability is prepared by mixing a silica inorganic binder and titanium dioxide. The silica inorganic binder is synthesized using a sol-gel process and mixed with titanium dioxide to improve whiteness at high-temperature. Adhesion between the polyimide substrate and the coating layer is secured and the surface properties of the coating layer, including the thermal and chemical stability, are investigated in detail. The effects of the coating solution dispersion on the surface properties of the coating layer are also analyzed. Finally, it is confirmed that the developed functional labeling paper showed excellent printability.
Generally, ceramic tiles for building construction are manufactured by dry forming process using granular powders prepared by spray drying process after mixing and grinding of mineral raw materials. In recent years, as the demand for large ceramic tiles with natural texture has increased, the development of granule powders with high packing ratio and excellent flowability has become more important. In this study, ceramic tile granule powders are coated with hydrophobically treated silica nanoparticles. The effects of hydrophobic silica coating on the flowability of granule powders and the strength of the green body are investigated in detail. Silica nanoparticles are hydrophobically treated with GPTMS(3-glycidoxypropyl trimethoxy silane), which is an epoxy-based silane coupling agent. As the coating concentration increases, the angle of repose and the compressibility decrease. The tap density and flowability index increase after silica coating treatment. These results indicate that hydrophobic treatment can improve the flowability of the granular powder, and prevent cracking of green body at high pressure molding.
Three-dimensional(3D) printing is a process for producing complex-shaped 3D objects by repeatedly stacking thin layers according to digital information designed in 3D structures. 3D printing can be classified based on the method and material of additive manufacturing process. Among the various 3D printing methods, digital light processing is an additive manufacturing technique which can fabricate complex 3D structures with high accuracy. Recently, there have been many efforts to use ceramic material for an additive manufacturing process. Generally, ceramic material shows low processability due to its high hardness and strength. The introduction of additive manufacturing techniques into the fabrication of ceramics will improve the low processability and enable the fabrication of complex shapes and parts. In this study, we synthesize silica composite material that can be applied to digital light processing. The rheological and photopolymeric properties of the synthesized silica composite are investigated in detail. 3D objects are also successfully produced using the silica composite and digital light processing.
In this study, ZrO2 ceramic ink was formulated for additive manufacturing three dimensional structure using dispenser printing technique. Ceramic ink with various ZrO2 loading (30, 40, 50vol%) was prepared to evaluate their rheological properties and printability. High ZrO2 loading ZrO2 ceramic ink showed higher elastic modulus and improved shape retention, when the ceramic ink was printed and sintered at 1450 oC for 1h. Microstructural analysis of printed ZrO2 objective indicated that high ZrO2 loading objective showed lower porosity and smaller pore size.
Ceramic ink-jet printing has become a widespread technology in ceramic tile and ceramicware industries, due to its capability of manufacturing products on demand with various designs. Generally, thermally stable ceramic inks of digital primary colors(cyan, magenta, yellow, black) are required for ink-jet printing of full color image on ceramic tile. Here, we synthesized an aqueous glass-ceramic ink, which is free of Volatile organic compound(VOC) evolution, and investigated its inkjet printability. CoAl2O4 inorganic pigment and glass frit were dispersed in aqueous solution, and rheological behavior was optimized. The formulated glass-ceramic ink was suitably jetted as single sphere-shaped droplets without satellite drops. After ink-jet printing and firing processes, the printed glass-ceramic ink pattern on glazed ceramic tile was stably maintained without ink spreading phenomena and showed an improved scratch resistance.
Recycled cenosphere, which is a hollow shaped particle from fly ash, has become attractive as a building material due to its light weight and excellent heat insulation and soundproof properties. In this paper, we investigated the effect of cenosphere size on the physical and optical properties. High brightness of cenosphere as raw material is required for a wide range of ceramics applications, particularly in fields of building materials and industrial ceramic tiles. Cenospheres were sorted by particle size; the microstructure was analyzed according to the cenosphere size distribution. Cenospheres were generally composed of quartz, mullite, and amorphous phase. Colour measurement corresponding to chemical composition revealed that the contents of iron oxide and carbon in the cenospheres were the major factors determining the brightness of the cenospheres.
Ink-jet printing techniques with ceramic ink, which contains ceramic pigments as colorant, are in increasingly use in the ceramic industry. Generally, ceramic pigments that are produced by conventional method show diameters of several micrometers; these micrometer sized particles in the ink-jet printing process can cause undesirable behavior such as print head nozzle clogging. To prevent this problem, a particle size reduction process is required. In this study, CMYK (cyan, magenta, yellow, black) pigments were synthesized via solid state method. Each pigment particle was milled to submicron size by an attrition mill. The effects of micronizing on the morphology, mechanical property, crystal structure and color property of the CMYK ceramic pigments were investigated by field emission scanning electron microscopy (FE-SEM), particle size analysis (PSA), X-ray diffraction (XRD) and CIE L*a*b*.
Recently, there have been many efforts to establish suitable processes for recycling fly ash, which is produced in thermal power plants and which poses serious environmental problems. Use of fly ash as a major ingredient of ceramic tiles can increase fly ash utilization, as well as reduce the cost of raw materials in ceramic tile production. In this study, the effects of fly ash addition on ceramic tile properties such as bending strength, water absorption and porosity were investigated. A manufacturing process of ceramic tile was developed for utilization of fly ash with high carbon content. In this approach, it is important to hold the ceramic tiles at a temperature that is sufficient for carbon oxidation, before the pores supplying oxygen to the inside of the ceramic tile are sealed. Ceramic wall tiles were manufactured with 0-40wt% of fly ash addition. The water absorption and porosity of the fired body were slightly changed with increasing fly ash content up to 30wt% and decreased with greater amounts of fly ash addition. The bending strength of ceramic tile including 10wt% fly ash increased, reaching a level comparable to that of ceramic tile without fly ash.
Using the ultrasonic pyrolysis method, spherical SiO2 powders were synthesized from aqueous SiO2 sol as a starting material. The effects of pyrolysis conditions such as reaction temperature, SiO2 sol concentration, and physical properties of precursor were investigated for the morphologies of the resulting SiO2 powders. The particle size, shape, and crystallite size of the synthesized SiO2 powders were demonstrated according to the pyrolysis conditions. Generally, the synthesized SiO2 particles were amorphous phase and showed spherical morphology with a smooth surface. It was revealed that increased crystallite size and decreased spherical SiO2 particle size were obtained with increases of the pyrolysis reaction temperature. Also, quantity of spherical SiO2 particles decreased with the decrease in the concentration and surface tension of the precursor.
SrAl2O4: Eu2+ and Dy3+ phosphorescent phosphors were synthesized using the polymerized complex method. Generally, phosphorescent phosphors synthesized by conventional solid state reaction show a micro-sized particle diameter; thus, this process is restricted to applications such as phosphorescent ink and paint. However, it is possible to synthesize homogeneous multi-component powders with fine particle diameter by wet process such as the polymerized complex method. The characteristics of SrAl2O4: Eu2+ and Dy3+ powders prepared by polymerized complex method with one and two step calcination processes were comparatively analyzed. Temperatures of organic material removal and crystallization were observed through TG-DTA analysis. The crystalline phase and crystallite size of the SrAl2O4: Eu2+ and Dy3+ phosphorescent phosphors were analyzed by XRD. Microstructures and afterglow characteristics of the SrAl2O4: Eu2+ and Dy3+ phosphors were measured by SEM and spectrofluorometry, respectively.