검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 132

        61.
        2015.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        As aluminum foam has the most superior absorption of impact energy, this material has been used at automobile and airplane. If aluminum foam is used by jointing bolt and nut, it can be broken. Therefore, it is more effective to bond aluminum foam and other materials by adhesive. In this study, the fatigue fracture simulation through ANSYS program is carried out on the aluminum foam specimen bonded with adhesive as the type of DCB Mode Ⅲ. There are four kinds of specimens with the types of DCB Mode Ⅲ in this study. The thicknesses of four specimens are 35mm, 45mm, 55mm and 65mm. In cases of specimen thicknesses of 35mm, 45mm, 55mm and 65mm, the maximum loads are shown as ±0.2kN, ±0.55kN, ±1kN and ±1.2kN respectively. As the specimen thickness increases, the maximum loads increase. The results of fatigue experiment as specimen thickness of 55mm can be shown to approach the simulation results by confirming the simulation results of this study. So, The simulation data can be applied in order to investigate the mechanical property at DCB specimen with the type of Mode Ⅲ.
        4,000원
        62.
        2015.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        CFRP composites have high specific strength, specific stiffness, long fatigue life, light weight environmental safety characteristics. In this study, the mechanical properties are investigated through the compressive simulation analysis on the carbon fiber reinforced plastic sandwich. The experiment is carried out with the same condition as the analysis to verify the analysis result. One sandwich plate is composed with four layers. From the upper, this plate has the first, second, third and fourth layers due to the arrangement of angle direction. A plate has the symbol of [0/30/30/0] as the first, second, third and fourth layers due to the angle directions of 0°, 30°, 30° and 0°. There are the plates of [0/30/30/0], [0/60/60/0] and [0/90/90/0] in this study. The maximum compressive load becomes 53.139kN during the compression time of 12 sec in case of the plate of [0/30/30/0]. The maximum compressive load becomes 61.826kN during the compression time of 12 sec in case of the plate of [0/60/60/0]. The maximum compressive load becomes 53.002kN during the compression time of 12 sec in case of the plate of [0/90/90/0]. So, the plate of [0/60/60/0] endures the most load among three plates. The result of this study can be applied practically through the validation of experimental data on the simulation data. In this study, the mechanical characteristics are examined systematically through the impact analysis on the composite material of the carbon fiber reinforced plastic with aluminum foam by using the impact absorption due to CFRP plate.
        4,000원
        63.
        2015.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigates the property of crack growth at the specimen of structural steel. The behaviour of fracture mechanics on the specimens with only a center crack and with holes existed symmetrically near a center crack is studied. The tensile load is applied on the specimens with these conditions. Stress intensity factors are obtained by the basis of these experimental values and these values are verified with the structural analysis of finite element method. As the length of center crack becomes larger in case of the specimen with holes existed symmetrically near a center crack, the values of deformation energy and stress become larger. On the contrary, the values of deformation energy and stress become smaller as the length of center crack becomes larger in case of the specimen with only a center crack. By examining the stress intensity factor in this study, this value becomes rather smaller although the length of center crack becomes larger. There is the position where crack is likely to happen or weak part at the mechanical structure or the machine. As the holes are punctured and arranged adequately near this crack or weak part by using the result of this study, the fracture due to it can be prevented.
        4,000원
        64.
        2015.03 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 알루미늄 폼을 TDCB 형태의 시험편으로 설계하여 ModeⅡ 조건에서의 정적 거동 실험 및 전단 피로 실험을 통해 평가 및 검토하였다. TDCB 시험편 모델들의 길이와 두께는 각각 200mm 와 25mm이고, 접착면의 각도는 6°에서 12°까지 2° 간격으로 4가지의 모델을 모델링을 하였다. 세 가지 모델의 실험 과정을 데이터화한 그래프들을 비교해 보면 같은 피로하중 조건에서는 모델의 경사진 각도가 클수록 피로하중을 견딜 수 있는 사이클 수가 많은 것을 알 수 있다. 실제 실험에서와 유사한 결과를 보이기 때문에 본 연구에서 수행한 유한요소법 해석 결과에 대한 검증을 할 수 있었고, 이와 같은 방법을 이용하면 많은 비용과 시간이 들어가는 실험 대신에 시뮬레이션만으로도 그 구조적 안전성을 파악할 수 있을 것으로 사료된다.
        3,000원
        65.
        2015.03 구독 인증기관 무료, 개인회원 유료
        기계의 무게를 대폭 줄이는 것을 목적으로 복합재료에 대해서 많은 연구를 진행하고 있다. 본 연구에서 탄소 섬유 강화 플라스틱과 알루미늄 폼으로 조합해서 만든 샌드위치에 대해서 압축 시뮬레이션 해석을 하였다. 또한 탄소 섬유 강화 플라스틱의 섬유의 배열방식은 [0/90/90/0]이다. 시뮬레이션 해석 방법은 ANSYS를 이용하여 실제와 같은 경계조건을 주고 유한요소해석을 진행하였다. 시편을 압축하는 동안에 탄소 섬유 강화 플라스틱과 알루미늄 폼이 그 접착력보다 크게 발생되어 떨어지는 형상이 일어났다. 또한 2438.3MPa의 최대 등가응력이 발생된 것을 확인하였다. 본 연구에서 나온 해석결과는 안전설계 및 복합재료의 개발에 필요한 자료를 제공할 수 있을 것으로 사료된다.
        3,000원
        66.
        2015.03 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 무릎 굽힘각도와 완충재사이의 상관관계를 통해 올바른 걸음걸이의 중요성과 완충재의 마모에 관해 해석하였다. 완충재에 가해지는 등가응력의 분포형상을 볼 때, 그 마모의 정도를 유추할 수 있어 이를 통하여 인공관절 상, 하부 파트의 설계와 인공관절 착용자의 바른 자세를 유도할 근거를 제시할 수 있다. 본 연구를 통하여 얻어진 무릎관절의 역학적 메커니즘과 인공관절을 삽입했을 때 나타나는 메커니즘에 대한 구조 해석 결과를 적용하여 무릎관절에 가해지는 피해량에 대하여 해석할 수 있다. 또한 실제 시험을 위해 예비된 시뮬레이션 해석 결과로서 실제의 생체실험에 대한 기초연구 자료로 제공될 수 있으며 그 실험과의 비교 분석 자료로도 사용할 수 있을 것으로 사료된다.
        3,000원
        67.
        2015.03 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 구조용강 시험편 내의 크랙의 성장특성을 주제로 하여 중앙크랙만이 존재하는 시험편과 중앙 크랙의 주변에 대칭으로 구멍들이 존재하는 시험편에 대한 파괴역학적 거동을 규명하고자 하였다. 구조용강으로 만들어진 시험편 내에 두 가지의 조건들을 적용하여 인장실험을 수행하였으며, 이를 통하여 시험편의 응력, Strain energy와 변형량에 대하여 해석하였다. 그리고 이러한 실험값들을 바탕으로 하여 응력확대계수를 구하였으며, 구해진 실험값들의 검증을 위하여 ANSYS 유한요소 해석 프로그램을 사용하여 시뮬레이션 해석을 수행하였다.
        3,000원
        68.
        2015.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigates the wear degree of the shock absorber at the artificial knee joint due to bending degree of knee. As the stress distribution due to this angle is understood when the knee is bent, it can be shown how much and which configuration the wear of the shock absorber progresses in. On the basis of the analysis result, the stress applied at the shock absorber becomes higher and the equivalent stress becomes higher as the bending angle of knee is increased. The walking habit as the right attitude can be examined by applying the general joint as well as the artificial knee joint by using this study result
        4,000원
        69.
        2015.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The honeycomb aluminum foam of the porous metal has the merit of the impact absorption, the soundproof, the heat conductivity, the light weight. Aluminum 6061-T6 is used at the materials for the automobile, the ship, the machine and various structures. In this study, the sandwich combined with the honeycomb aluminum foam and aluminum 6061-T6 is simulated with the impact. Two kinds of models made by use of CATIA program with 3 kinds of impact energies are analyzed by ANSYS program. As the simulation result, the maximum deformations at the cases of 1 and 2 are shown as 4.8205mm and 11.909mm respectively. And the maximum equivalent stresses at the cases of 1 and 2 are shown as 274.45MPa and 265.6MPa respectively. As the simulation result at case 1 approaches the experimental result, all simulation results can be verified in order to apply into analyzing the impact properties of the honeycomb aluminum foam sandwiches. In cases of three kinds of impact energies, the striker is not shown to penetrate the upper face sheets of case 1. At the impact energy of 100 J, the striker is not shown to penetrate the upper face sheets of case 2. At the impact energies of 200 J and 300 J, the striker is shown to penetrate the upper face sheets of case 2. It is thought to predict and improve the structural safety the composite material combined with the aluminium foam by using this study result.
        4,000원
        70.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The porous metallic material has the most superior physical property and the best mechanical capability. This study is investigated with the simulation analysis by compressing three kinds of specimens. Three aluminum foams with the thickness of 10 mm are bonded at Case 1. Two aluminum foams with the thicknesses of 10 mm and 20 mm are bonded at Case 2. It is one aluminum foam with the thickness of 30 mm at Case 3. The two dimensional model is done by ANSYS design modeler and the finite element analysis is performed by ANSYS structural analysis. As the forced displacement of 1 mm during the elapsed time of 60 sec is applied, the forced displacement of 10 mm during the total elapsed time of 600 sec is applied. As the analysis result, the most reaction force is shown at case 2 among three cases. Case 2 is estimated as the best structure. The analysis result of this study is thought to be the data necessary for the safe design about mechanical structure and the development of composite material.
        4,000원
        71.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, the light weight and the safety of automobile are the important targets of automotive design and the parts for car have been substituted the plastic or the porous material for the steel material. As the aluminium foam has many pores at its surface, it has the fatigue property of bonded face which differs from general material. In this study, two dimensional model is designed and performed with the fatigue analysis as the variable(θ value) becomes the slant angle of bonded face at the specimen with the aluminium foam. As the analysis result on the models with the slant angles of 6°, 8° and 10°, the bonding forces are disappeared when the fatigue loads are repeated during 4000 cycle, 4500cycle and 5000cycle respectively. By comparing with the analysis results of three models, the fatigue cycle to endure fatigue load becomes larger as the slant bonded angle becomes higher. So, the structural safety can be seen by applying only as only a simulation of finite element method instead of the experiment where much cost and time is spent. In this study, the configuration of aluminum foam is designed with the shape of TDCB Mode II. The shear fatigue strength of the bonded structure can be evaluated by the analysis program of ANSYS.
        4,000원
        72.
        2014.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The automotive bumper has the functions of strength, rigidity and fine sight. It protects the driver, front and rear sides of car body through shock absorption at the traffic accident of car. This study investigates the impacts on front side and corner with the low speed of 4.5 km/h by using the model of SUV car body. The models are modelled by CATIA program with three dimensions and are analyzed by the finite element program of ANSYS Explicit STR. The maximum equivalent stresses at impacts of front side(case 1) and corner (case 2) at bumper are 261.72MPa and 365.02MPa respectively. As this stress at case 2 becomes 40% higher than at case 1, the impact of corner is happened easier than at the damage at the impact of front side. These stresses at case 1 and case 2 are shown above the yield stress at material property of steel, it is thought that there are the possibilities of plastic damages at two cases. The maximum deformation and equivalent stress at the support 2 of case 2 become 5 times and 3 times higher than at the support 1 respectively. The damage possibility due to impact at low speed is investigated by the basic analysis result of this study. And this result can be utilized at inspecting the result of impact test on bumper hereafter.
        4,000원
        73.
        2014.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the ventilation of duct is simulated by CFD and thermal changes on the seat surface are measured experimentally. These models are the improved duct and the existing one installed at the real seat in order to test the thermal change 1 minute later. The seat with the existing duct has the temperatures of 26℃ and 25℃ on lumber and femoral parts respectively. However, the seat with the improved duct has the temperature of 1℃ lower than the seat with the existing duct. This result contributes to develop the improved duct. Hereafter, the methods used in this study are expected to be useful at checking the flow resistance loss of the ventilation seat duct and assessing the flow channel design
        4,000원
        74.
        2014.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigates area and size of stress part appeared when the continuous loads are applied at artificial joint. Upper and lower parts composed with polyethylene shock absorber and titanium alloy are applied with the loads. The configurations of stress distribution near the hole of support to fix the frame are investigated and secured as through this study. As the result of this study, the stress is concentrated from the edge end of upper artificial joint. The crack is initiated at this point. This analysis result is similar with the instance of tissue corruption due to the damage of artificial joint.
        4,000원
        75.
        2014.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the specimen of tapered double cantilever beam(TDCB) with aluminum foam is designed and shearing fatigue strength is based on the investigation of static behaviour analysis under the condition of mode Ⅱ. These specimen models have length and width of 200 mm and 25 mm. The inclined angles of adhesive face at the specimens are 6°, 8 °and 10°. As the inclined angle becomes higher, the time for which the model can not be broken during fatigue load becomes longer. The shearing strength of TDCB bonded structure with aluminum foam applied by shearing fatigue load can be evaluated through finite element method.
        4,000원
        1 2 3 4 5